Методы защиты от лазерного излучения. Лазерные гаджеты и их излучение

Защита персонала от лазерного излучения осуществляется техническими, организационными и санитарно-гигиеническими методами и средствами.

К основным организационным мероприятиям относятся:

    рациональное размещение лазерных установок;

    ограничение времени воздействия излучения;

    обучение персонала;

    проведение инструктажей;

    выбор, планировка и внутренняя отделка помещений;

    организация рабочего места.

К техническим мероприятиям относятся:

    применение коллективных средств защиты;

    применение индивидуальных средств защиты.

Санитарно-гигиенические и лечебно-профилактические методы включают:

    контроль за уровнями опасных и вредных производственных факторов на рабочих местах;

    контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Технические средства защиты применяются для предотвращения воздействия или снижения уровня излучения до допустимых значений, не ограничивая при этом технологических возможностей лазеров и не снижая работоспособность человека. Их защитные характеристики должны оставаться неизменными в течение установленного срока эксплуатации.

К средствам коллективной защиты от лазерного излучения относятся:

    оградительные устройства (экраны, щиты, смотровые окна, световоды, перегородки, камеры, кожухи, козырьки, бленды и др.), подразделяемые:

    по принципу ослабления на поглощающие; отражающие и комбинированные;

    по степени ослабления на непрозрачные и частично прозрачные;

    предохранительные устройства, подразделяемые по конструктивному исполнению на:

    оптические устройства для визуального наблюдения и юстировки с вмонтированными светофильтрами;

    юстировочные лазеры;

    телеметрические и телевизионные системы наблюдения;

    индикаторные устройства;

    устройства автоматического контроля и сигнализации;

    устройства дистанционного управления;

    символы органов управления.

Средства индивидуальной защиты от лазерного излучения включают:

    средства защиты глаз и лица (защитные очки, щитки, насадки);

    средства защиты рук (перчатки);

    специальную одежду (халаты из хлопчатобумажной или бязевой ткани).

Средства индивидуальной защиты глаз и лица применяются только в тех случаях (пусконаладочные, ремонтные, экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

Применение различных средств защиты от лазерного излучения в зависимости от класса опасности лазера приведено в табл. 31.

Расположение защитных устройств в лазерной установке дано на рис. 87. Экраны и элементы оградительных устройств изготавливаются из огнестойких материалов, не выделяющих вредных веществ при высоких температурах. Конструкция лазерной установки должна исключать воздействие на работающих прямых и диффузных лазерных излучений.

Таблица 31

Средства защиты от лазерного излучения

Средства защиты

Класс опасности лазера

Примечание

Оградительные устройства (кожухи, экраны и т.д.)

Должны снижать уровни опасных и вредных производственных факторов до безопасных значений

Дистанционное управление

Применяется во всех возможных случаях

Устройства сигнализации

Для лазеров видимого диапазона спектра

Для лазеров УФ диапазона спектра

Для лазеров ИК диапазона спектра

Маркировка знаком лазерной опасности

Лазеры, зона прохождения луча, граница ЛОЗ

Кодовый замок

На дверях помещений, пульте управления

Защитные очки, снижающие уровень диффузного излучения на роговице глаза до ПДУ

При времени воздействия больше 0, 2, 5 с

Всегда, когда средства коллективной защиты не обеспечивают безопасных условий труда

Защитная одежда

При соответствующей опасности

Юстировочные очки, снижающие уровень коллимированного излучения на роговице до ПДУ

Ограничено при выполнении юстировки, наладки и ремонтно-профилактических работах

Примечание. ЛОЗ (лазерно-опасная зона) – часть пространства, в пределах которого уровень лазерного излучения превышает предельно допустимый уровень. Юстировка лазера – это совокупность операций по регулировке оптических элементов лазерного изделия для получения требуемых пространственно-энергетических характеристик лазерного излучения.

Для выбора средств защиты лазеры классифицируются по степени опасности:

Класс I (безопасные) - выходное излучение не представ­ляет опасности для глаз и кожи;

Класс II (малоопасные) - выходное излучение представля­ет опасность для глаз прямым и зеркально отраженным излучением;


Класс III (опасные) - опасно для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от диффузно отражающей поверхности и для кожи прямое и зеркально отраженное облучение;

Класс IV (высокоопасные) - опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражаю­щей поверхности.

Энергия лазерного луча уменьшается с расстоянием. Вокруг лазеров определяется граница лазерно-опасной зоны, которая может быть обозначена на полу помещения линией.

Наиболее эффективным методом защиты от ЛИ является эк­ранирование. Луч лазера передается к мишени по волноводу (световоду) или огражденному экраном пространству.

Для снижения уровня отраженного излучения линзы, приз­мы и другие предметы с зеркально отражающей поверхностью, устанавливаемые на пути луча, снабжаются блендами. Для защи­ты от отраженного облучения от объекта (мишени) применяются диафрагмы с отверстием, немного превышающим диаметр луча (рис. 3.37). В этом случае через отверстие диафрагмы проходит только прямой луч, а отраженное излучение от мишени попадает на диафрагму, которая поглощает и рассеивает энергию.


Рис. 3.37. Схема экранирования отраженного излучения лазера блендами и диа­фрагмами: 1 - лазер; 2- бленда; 3- линза; 4- диафрагма; 5 - мишень

На открытых площадках обозначаются опасные зоны и уста­навливаются экраны, предотвращающие распространение излу­чений за пределы зон. Экраны могут быть непрозрачными и прозрачными.

Непрозрачные экраны изготовляются из металлических лис­тов (стали, дюралюминия и др.), гитенакса, пластика, текстоли­та, пластмасс.

Прозрачные экраны из специальных стекол светофильтров или неорганического стекла со спектральной характеристикой, соответствующей длине волны излучения лазера.

Приведение лазера в рабочее состояние обычно блокируется с установкой защитного устройства. Генератор и лампы накачки лазера заключаются в светонепроницаемую камеру. Лампы на­качки должны иметь блокировку, исключающую вспышку лам­пы при открытом положении камеры.

Для основного луча каждого лазера выбирается направление и зона, в которых исключается пребывание людей. Работы с ла­зерными установками проводятся в отдельных помещениях или специально отгороженных частях помещения. Само помещение изнутри, оборудование и другие предметы не должны иметь зер­кально отражающих поверхностей, если на них может падать прямой или отраженный луч лазера. Эти поверхности окрашива­ются в матовые цвета.

Для мишени рекомендуется темная окраска. В помещении должна быть создана хорошая освещенность. Коэффициент есте­ственной освещенности (КЕО) должен быть не менее 1,5 %, а об­щее искусственное освещение не менее 150 л к (см. гл. 2, разд. IV).

При эксплуатации импульсных лазеров с высокой энергией излучения должно применяться дистанционное управление. Ла­зеры IV класса опасности обязательно располагаются в отдель­ном помещении и снабжаются дистанционным управлением. Присутствие в помещении людей при работе такого лазера не допускается.

Средства индивидуальной защиты применяются при недоста­точности для защиты средств коллективной защиты. К СИЗ от­носятся технологические халаты, перчатки (для защиты кожных покровов), специальные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, свет­ло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стеклами специальных марок, обеспечивающими защиту от лазерного излучения определенных диапазонов длин волн. Поэтому выбор очков должен соответст­вовать длине волны лазерного излучения.

Методы защиты от лазерного излучения

К организационным защитным мероприятиям относятся:

· Организация рабочих мест с определением всех необходимых защитных мероприятий и учетом специфики конкретных обстоятельств использования лазерных установок;

· Обучение персонала и контроль знаний правил техники безопасности;

Технические мероприятия и средства защиты подразделяются на коллективные и индивидуальные. Коллективные включают в себя:

· Средства нормализации внешней среды;

· Автоматические системы управления технологическим процессом;

· Использование предохранительных устройств, приборов, различных ограждений лазерно - опасной зоны;

· Использование телеметрических и телевизионных систем наблюдения;

· Применение заземления, зануления, блокировки и т.д.

Биологическое воздействие лазерного излучения на организм делится на две группы:

* первичные эффекты или органические изменения, возникающие непосредственно в облучаемых тканях персонала;

* вторичные эффекты - различные неспецифические изменения, возникающие в тканях в ответ на облучение.

Основные негативные проявления на организм человека: тепловые, фотоэлектрические, люминесцентные, фотохимические.

При попадании лазерного излучения на поверхность металла, стекла и др. происходит отражение и рассеивание лучей.

Опасные и вредные факторы работы ОКГ:

* лазерное облучение (прямое, рассеянное, отраженное);

* световое излучение от импульсных ламп;

* ультрафиолетовое излучение от кварцевых газоразрядных трубок;

* шумовые эффекты;

* ионизирующее излучение;

* электромагнитные поля ВЧ и СВЧ от генераторов накачки;

* инфракрасное излучение и тепловыделение от оборудования и нагретых поверхностей;

* агрессивные и токсические вещества, используемые в конструкции лазера .

Степень воздействия лазерного излучения на организм человека зависит от длины волны, интенсивности (мощности и плотности) излучения, длительности импульса, частоты импульсов, времени воздействия, биологических особенностей тканей и органов. Наиболее биологически активно ультрафиолетовое излучение, вызывающее фотохимические реакции.

За счет термического действия лазерного излучения на коже возникают ожоги, а при энергии более 100 Дж происходит разрушение и сгорание биоткани. При длительном воздействии импульсного излучения в облученных тканях энергия излучения быстро преобразуется в теплоту, что ведет к мгновенному разрушению тканей.

Нетермическое действие лазерного излучения связано с электрическими и фотоэлектрическими эффектами.

Поток энергии, попадая на биологические ткани, вызывает в них изменения , наносящие вред здоровью человека. Опасно это излучение и для органов зрения. Особенно опасно, если лазерный луч пройдет вдоль зрительной оси глаза. Если луч лазера фиксируется на сетчатке глаза, то может произойти коагуляция сетчатки, в результате чего возникнет слепота в пораженной области сетчатки. При этом необходимо помнить, что опасность для органов зрения представляет не только прямой, но и отраженный лазерный луч, даже если отражающая его поверхность незеркальная.

* осуществлять визуальный контроль степени излучения, генерацией;

* направлять излучение лазера на человека;

* персоналу носить блестящие предметы (серьги, украшения);

* обслуживать лазерную технику одним человеком;

* находиться посторонним лицам в зоне излучения;

* размещать в зоне луча предметы, вызывающие зеркальное отражение.

Рабочие места должны быть оборудованы вытяжной вентиляцией.

При недостаточном обеспечении безопасности коллективными средствами защиты применяются индивидуальные СИЗ. К средствам индивидуальной защиты относятся специальные противолазерные очки (светофильтры), щитки, маски, технологические халаты и перчатки (черного цвета из обычных хлопчатобумажных тканей).

Ношение защитных очков со светофильтрами (табл. 2.6.8) обеспечивает интенсивное снижение облучения глаз лазерным облучением. Светофильтры должны соответствовать специальной оптической плотности, спектральной характеристике и максимально допустимому уровню излучения.

С целью обеспечения безопасности работ с лазерами при разработке проектов, планировок и размещении оборудования прежде всего должны быть предусмотрены меры по защите работающих от лазерных излучений, а также от других сопутствующих опасных и вредных производственных факторов.

Наличие того или иного неблагоприятного фактора зависит от типа и мощности лазеров, а также от условий их применения. Перечень опасных и вредных производственных факторов, которые могут присутствовать при эксплуатации лазеров I-IV классов, приведен в табл. 11.1.

Для защиты от лазерного излучения предусматриваются следующие меры.

Размещение лазерных установок разрешается только в специально оборудованных помещениях. Следует избегать размещения в одном помещении двух и более лазерных установок. В последнем случае для каждой установки отводят отдельный светонепроницаемый бокс. Двери помещений, в которых размещены лазерные установки III, IV классов, должны быть заперты на внутренние замки с блокирующими устройствами, исключающими доступ в помещения во время работы лазеров, а также иметь автоматически включающееся световое табло «Опасно, работает лазер!»

На дверях помещений, оборудовании, приборах и в других местах, где имеется лазерное излучение, должен быть знак лазерной опасности «Опасно. Лазерное излучение» по ГОСТ 12.4.026-2001.

Установку размещают таким образом, чтобы луч лазера был направлен на капитальную, неотражающую, огнестойкую стену, но не на окна, двери, некапитальные сооружения, способные пропускать излучение. Стены и потолки окрашивают матовой краской с малой отражающей способностью. Для фона мишени рекомендуется темная краска с высоким коэффициентом поглощения, а для окружающей площади – светлая. Предметы, находящиеся в помещении, за исключением специальной аппаратуры, не должны иметь зеркальных поверхностей. Если этого нельзя избежать, то такие поверхности драпируют материалом (черной байкой или другими подобными).

Следует избегать работ с лазерными установками при затемнении помещения. Естественное и искусственное освещение должно быть обильным, чтобы зрачок глаза всегда имел минимальные размеры. Никакие работы не должны производиться при недостаточном освещении.

Для предотвращения поражения прямым или зеркально отраженным лучом лазера предусматриваются ограждения, исключающие возможность выхода луча за пределы установки закрытого типа и возможность проникновения человека в зону прохождения луча; применяются блокировки или затворы для защиты глаз работающего на установке, в которой системы наблюдения совпадают с оптической системой.

Оградительные устройства – для защиты от лазерного излучения подразделяют:

По способу применения – стационарные и передвижные;

По конструкции – откидные, раздвижные, съемные;

По способу изготовления – сплошные, со смотровыми стеклами, с отверстием переменного диаметра;

По структурному признаку – простые, составные (комбинированные);

По виду применяемого материала – неорганические, органические, комбинированные;

По принципу ослабления – поглощающие, отражающие, комбинированные;

По степени ослабления – непрозрачные, частично прозрачные;

По конструктивному исполнению – бленды, диафрагмы, заглушки, затворы, кожухи, козырьки, колпаки, крышки, камеры, кабины, мишени, обтюраторы, перегородки, световоды, смотровые окна, ширмы, щитки, шторки, щиты, шторы, экраны.

При изготовлении экранирующих щитов, ширм, штор необходимо применять непрозрачные теплостойкие материалы. Если отсутствует опасность возникновения пожара от луча лазера, ограждения могут быть выполнены из плотной ткани.

Помещения, в которых при эксплуатации лазерных установок происходит образование вредных газов и аэрозолей, должны быть оборудованы общеобменной, а в необходимых случаях и местной вытяжной вентиляцией для удаления загрязненного воздуха с последующей его очисткой. В случае использования веществ I и II классов опасности должна быть предусмотрена аварийная вентиляция.

При работе лазеров на открытом месте следует обозначить зону повышенной плотности энергии излучения и оградить ее стойкими, непрозрачными экранами для исключения возможности выхода луча за пределы этой зоны. Следует избегать работы наружных установок при плохой погоде, так как туманы, снег, пыль усиливают рассеивание лучей.

Для оценки опасности действия лазерного излучения в производственных условиях следует произвести расчет лазерно опасной зоны.

Расчет границ лазерно опасной зоны

Достаточно надежным и простым методом определения границы лазерно опасной зоны может быть расчет плотности потока излучения (облученности) в различных точках пространства вокруг лазерных установок. При проведении такого расчета необходимо знать выходные характеристики лазерного излучения и коэффициент отражения (альбедо) излучения от мишени ρ. Наиболее важными характеристиками лазерного излучения, определяющими его воздействие на биологические объекты, являются: длина волны, диаметр и расходимость пучка, длительность и частота повторения импульсов, энергия (мощность) излучения. Как правило, эти параметры известны из паспортных данных лазерной установки с достаточной точностью.

При определении границ лазерно опасной зоны исходят из предположения, что воздействие на человека прямых и зеркально отраженных лучей исключено конструкцией установки.

Расчет лазерно опасной зоны начинают с определения границ зоны 1 , внутри которой источник излучения (отражающая поверхность) является для глаза протяженным, рис. 11.1.

Рис. 11.1. Схема к расчету лазерно опасной зоны:

I – граница зоны 1 ; II - граница лазерно опасной зоны; III - граница зоны, внутри которой

излучение представляет опасность для кожи; 1 – лазер; 2 - мишень

Отражающая поверхность будет протяженным источником в том случае, если она видна под углом большим или равным α min . Угол α min определяется из условия, когда поверхность с энергетической яркостью L е , равной ПДУ для диффузно отраженного излучения, создает на роговице глаза энергетическую освещенность, соответствующую ПДУ для коллимированного излучения, т.е.

, (11.6)

где Θ - угол между направлением визирования и нормалью к поверхности; - энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения.

Значения α min для различных длительностей экспозиций приведены в табл. 11.2.

Таблица 11.2.

Предельный угол видения протяженного источника

Угол видения отражающей поверхности α вычисляется по формуле:

, (11.7)

где S q – площадь пятна на отражающей поверхности; R – расстояние от поверхности до наблюдателя.

Подставив в формулу (11.7) выражение для α min (11.6), определим значение радиуса зоны 1 – R 1:

, (11.8)

где Е э " – энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения; L е ´ – энергетическая яркость поверхности, равная ПДУ для диффузионно отраженного излучения.

Граница лазерно опасной зоны определяется в каждом конкретном случае по следующей схеме:

1) рассчитывается угол видения отражающей поверхности по формуле (11.7);

2) полученное по формуле (11.7) значение угла α сравнивается с предельным углом видения протяженного источника α min , при этом могут возникнуть две ситуации:

а) угол видения отражающей поверхности меньше α min (точечный источник); в этом случае граница лазерно опасной зоны вычисляется по формуле:

(11.9)

б) угол видения отражающей поверхности больше α min (протяженный источник). В этом случае повреждение органов зрения определяется энергетической яркостью отражающей поверхности L е. Если энергетическая яркость диффузно отражающей поверхности меньше ПДУ, то источник является безопасным. Если энергетическая яркость равна ПДУ, то граница лазерно опасной зоны совпадает с границей зоны I (рис. 11.1), вычисляемой по формуле (11.8). И, наконец, если энергетическая яркость превышает ПДУ, то граница лазерно опасной зоны вычисляется по формуле (11.9).

Лазерное излучение может представлять также опасность для кожи. В этом случае опасность лазерного излучения определяется величиной облученности кожных покровов и не зависит от геометрических размеров источников излучения. Граница зоны, внутри которой необходимо использовать средства защиты кожи, вычисляется по формуле (11.9), в которую необходимо вместо ПДУ для глаз подставить значение ПДУ для кожи.

Расчет лазерно опасной зоны при длине волны излучения, находящейся вне интервала 0,4-1,4 мкм, проводится по формуле (11.9) независимо от геометрических размеров источника излучения.

Расчетный метод оценки границ лазерно опасной зоны является ориентировочным (рис. 11.1), так как он требует знаний энергетических характеристик лазерного излучения, коэффициента отражения излучения, закона отражения и не учитывает дополнительно отраженного от различных предметов (оптических элементов и т.п.) излучения. Более точным является экспериментальный метод, позволяющей по результатам измерений строить истинную картину поля излучения вокруг лазерных установок.

Меры защиты от других опасных и вредных факторов, возникающих при эксплуатации лазерных установок (см. табл. 11.1), выбирают с учетом требований, изложенных в соответствующих разделах данной книги.

Средства индивидуальной защиты

СИЗ от лазерного излучения включают в себя средства защиты глаз и лица (защитные очки, щитки, насадки), средства защиты рук, специальную одежду. При выборе СИЗ необходимо учитывать рабочую длину волны излучения и оптическую плотность светофильтра.

Оптическая плотность светофильтров, применяемых в защитных очках, щитках и насадках, должна удовлетворять требованиям:

, (11.10)

или (для диапазона 380 < λ £1400 нм)

, (11.11)

где , , , - максимальные значения энергетических параметров лазерного излучения в рабочей зоне; , , , - предельно допустимые уровни энергетических параметров при хроническом облучении.

Защитные очки предназначены для защиты глаз при определенной длине волны, что необходимо учитывать при их выборе. В качестве светофильтров рекомендуется применять стекла по ГОСТ 9411-91 «Стекло оптическое цветное. Технические условия». Отдельные марки стекол приведены в табл. 11.3.

Длина волны, нм Марка стекла
УФС1, УФС5, ПС11, БСЗ, БС12
УФС2, УФС5, УФС6, БС4
ФС1, ФС6, СЗС7, СЗС8, СЗС9
СС16, ОС5, ПС11
СС1, СС2, СС4, СС5, ЖЗС9, ЖЗС12
УФС8, ФС1, СС1, СЗС5, ОС5, ИКС1, ПС11
ФС6, СЗС15, ИКСЗ, ИКС5, ИКСУ
ИКСЗ, ИКС5, ИКС7
СЗС5, СЗС16, НС14, ТСЗ
ИКС1, ИКСЗ, ИКС6, ИКС7
Примечание: УФС – ультрафиолетовое стекло; ФС – фиолетовое стекло; ИКС – инфракрасное стекло; ОС – оранжевое стекло; СЗС – сине-зеленое стекло; БС – бесцветное (ультрафиолетовое) стекло; ПС – пурпурное стекло; ЖЗС – желто-зеленое стекло; СС – синее стекло; НС – нейтральное стекло; ТС – темное стекло

В паспорте на очки должны быть указаны диапазоны длин волн, на которые рассчитаны эти очки, и оптическая плотность светофильтра.

Форма оправы защитных очков должна исключить возможность попадания излучения лазера внутрь очков через щели между оправой и лицом, а также обеспечивать широкое поле зрения. Целесообразно очки вмонтировать в маску или полумаску, защищающую лицо.

Защитные лицевые щитки применяются в тех случаях, когда лазерное излучение представляет опасность не только для глаз, но и для кожи лица.

При настройке резонаторов газовых лазеров, работающих в видимой области спектра, для защиты глаз следует применять защитные насадки (ЗН). Защитные насадки могут использоваться самостоятельно или в сочетании с оптическими устройствами, такими как диоптрийная трубка.

Одежда должна оставлять возможно меньше открытых частей тела. Она может быть обычной, предпочтительней халаты из непроницаемой ткани черного цвета. Руки защищают хлопчатобумажными перчатками.

Контроль лазерных излучений

Дозиметрический контроль лазерного излучения заключается в оценке тех характеристик лазерного излучения, которые определяют его способность вызывать биологические эффекты, и сопоставлении их с нормируемыми величинами.

Различают две формы дозиметрического контроля: предупредительный(оперативный) дозиметрический контроль и индивидуальный дозиметрический контроль.

Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерного излучения в точках на границе рабочей зоны, он проводится в соответствии с регламентом, утвержденным администрацией предприятия, но не реже одного раза в год в порядке текущего санитарного надзора, а также в следующих случаях:

При приемке в эксплуатацию новых лазерных изделий II-IV классов;

При внесении изменений в конструкцию действующих лазерных изделий;

При изменении конструкции средств коллективной защиты;

При проведении экспериментальных и наладочных работ;

При аттестации рабочих мест;

При организации новых рабочих мест.

Предупредительный дозиметрический контроль проводят при работе лазера в режиме максимальной отдачи мощности (энергии), определенной в паспорте на изделие и конкретными условиями эксплуатации.

Индивидуальный дозиметрический контроль заключается в измерении уровней энергетических параметров излучения, воздействующего на глаза (кожу) конкретного работающего в течение рабочего дня, он проводится при работе на открытых лазерных установках (экспериментальных стендах), а также в тех случаях, когда не исключено случайное воздействие лазерного излучения на глаза и кожу.

Для проведения измерений применяются переносные дозиметры лазерного излучения, отвечающие требованиям ГОСТ 24469-80 «Средства измерений параметров лазерного излучения. Общие технические требования» и позволяющие определять облученность Е е и энергетическую экспозицию Н е в широком спектральном, динамическом, временном и частотном диапазонах.

При измерениях энергетических параметров лазерного излучения предел допускаемой погрешности дозиметров не должен превышать 30%.

Промышленностью выпускается ряд приборов, позволяющих измерять энергетические характеристики лазерного излучения, см. приложение 10. В зависимости от типа приемника излучения приборы подразделяются на колориметрические (цвет), пироэлектрические (появление электрических зарядов при изменении температуры), болометрические (изменение электрического сопротивления термочувствительных элементов), пондеромоторные (эффект давления света на тело) и фотоэлектрические (изменение проводимости).

Контрольные вопросы к разделу 11:

1. Что такое – лазер, и с какими его свойствами связано широкое применение в различных отраслях деятельности?

2. Как подразделяют лазеры по типу активной среды?

3. Какие параметры лазерного излучения относят к энергетическим?

4. Какие параметры лазерного излучения относят к временны́м?

5. Какие виды лазерного излучения существуют?

6. Как подразделяют лазеры по степени опасности генерируемого излучения?

7. Какие опасные и вредные факторы могут возникнуть при работе лазера?

8. Чем определяется биологическое воздействие лазерных излучений на организм человека?

9. От каких факторов зависит степень тяжести повреждения организма человека при воздействии лазерного излучения?

10. Что может случиться от попадания прямого или отраженного пучка лазерного излучения на кожные покровы или роговицу глаза человека?

11. Зависят ли предельно допустимые уровни (ПДУ) лазерного излучения от длины его волны?

12. Какие требования предъявляются к помещениям для размещения лазеров?

13. Какие требования предъявляются к освещению помещений, в которых проводятся работы с лазерами?

14. Как должен быть ориентирован лазерный луч при его использовании?

17. Какие средства индивидуальной защиты применяются при работе с лазерным излучением?

15. Какое стекло можно использовать для защитных от лазерного излучения очков?

16. В каких случаях проводится предупредительный дозиметрический контроль лазерного излучения?

17. С какой целью проводится индивидуальный дозиметрический контроль лазерного излучения?

4 МЕРЫ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

При работе с лазерными установками потенциальную опасность для организма человека (пациента, медицинского персонала) представляет неконтролируемое прямое и рассеянное лазерное излучение. Наибольшую опасность оно представляет для зрения оператора, работающего с лазерной установкой. Однако рассеянное инфракрасное лазерное излучение непрерывных углекислотных лазеров установок «Скальпель-1», «Ромашка-1», «Ромашка-2» полностью задерживается слоями слезной жидкости и роговицы глаза и не достигает глазного дна. Поскольку глубина проникновения лазерного излучения не превышает 50 мкм, около 70% его энергии поглощается слезной жидкостью и около 30% -роговицей.

Высокоинтенсивное излучение углекислотного лазера, особенно если оно сфокусировано, может вызывать локальное ожоговое поражение кожи открытых частей тела -рук, лица. Воздействие лазерного излучения на организм человека не проявляется только при интенсивности облучения ниже безопасного уровня, которое для углекислотного лазера непрерывного действия составляет для глаз 0,1 Вт/см 2 . Известно, что в клинических условиях для достижения требуемого клинического эффекта применяют уровни прямого облучения, в сотни и тысячи раз превышающие безопасный уровень, поэтому при работе с углекислотными лазерными установками необходимо соблюдение определенных мер защиты.

В помещении, где выполняют операции с использованием углекислотного лазера, целесообразно стены и потолок покрыть материалом с минимальной отражающей способностью, а_ аппаратуру и приборы с гладкими блестящими поверхностями разместить таким образом, чтобы на них ни при каких обстоятельствах не мог попасть прямой луч, или отгородить их ширмами, с матовыми темными поверхностями. Перед входом в помещение, в котором находится установка, должно быть установлено световое табло («Не_входить»__«Включен лазер»), включаемое во время лазерной операции.

Защита глаз больных и персонала от прямого или отраженного излучения углекислотного лазера надежно гарантируется очками из обычного оптического стекла. Желательно, чтобы очки были изготовлены таким образом, чтобы исключалась возможность попадания лазерного излучения через щели между оправой и лицом и обеспечивалось широкое поле зрения. Очки надевают только на время выполнения лазерного этапа хирургического вмешательства, чтобы предотвратить непосредственное воздействие лазерного облучения на глаза.

При работе с углекислотными лазерными установками использование лазерных хирургических инструментов повышает опасность повреждения кожи рук и лица хирурга за счет отражения от инструментов лазерного луча. Эта опасность резко снижается при применении инструментов, имеющих специальное «чернение». «Черненые» инструменты поглощают около 90% попадающего на них лазерного излучения с длиной волны 10,6 мкм. Другие инструменты - ранорасширители, кровоостанавливающие зажимы, пинцеты, сшивающие аппараты - также могут отражать лазерный луч. Однако в руках опытного хирурга любое хирургическое вмешательство может быть выполнено без направления лазерного луча на эти инструменты. Существует также опасность возгорания операционного материала, салфеток, простыней и др. при попадании на них прямо направленного лазерного излучения, поэтому при работе с ним необходимо в зоне предполагаемой лазерной обработки использовать мягкий материал, смоченный в изотоническом растворе хлорида натрия._ Целесообразно также в момент выполнения лазерного этапа операции удалять из поля действия лазерного излучения приборы и инструменты, изготовленные из пластических масс, способных возгораться при высокой температуре.

Не следует также забывать, что лазерная установка одновременно является и устройством, работающим с использованием электроэнергии. В связи с этим при работе с ней необходимо соблюдать правила электробезопасности, выполняемые при эксплуатации электроустановок потребителей.

Персонал, работающий с лазерными установками, должен пройти специальную подготовку и иметь соответствующую квалификацию. Все лица, работающие с лазерным излучением, регулярно, не менее одного раза в год, должны подвергаться медицинскому обследованию, включающему осмотр офтальмологом, терапевтом и невропатологом. Кроме того, необходим клинический анализ крови с проверкой уровня гемоглобина, числа лейкоцитов и лейкоцитарной формулы. Проводят также основные печеночные пробы.

При аккуратном соблюдении изложенных выше правил опасность повреждения органов, тканей и биологических сред человеческого организма практически отсутствует. Так, за 10-летний период работы с различными лазерными установками, которыми в общей сложности было выполнено несколько тысяч различных операций, мы не наблюдали ни одного случая поражения глаз и кожи лазерным излучением, а также изменений в состоянии здоровья ни у одного из сотрудников учреждения, связанных с работой на лазерных установках.


Лазер мог бы стать важным элементом энергетики будущего. В частности, работая на космической орбите, он мог бы передавать энергию на Землю в виде мощного лазерного луча. 2. ПРИМЕНЕНИЕ ЛАЗЕРОВ 2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается...

Что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой...



Рабочий газ с большой скоростью продувают через область разряда, и джоулево тепло выносится разрядом. Применение быстрой прокачки позволяет поднять плотности энерговыделения и энергосъема. CO2-лазер в медицине применяется почти исключительно как «оптический скальпель» для резания и испарения во всех хирургических операциях. Режущее действие сфокусированного лазерного пучка основано на взрывном...

Для анализа, мг 5 – 10 Напряжение сети питания, В 220 Габаритные размеры, мм 800*450*600 Вес не более, кг 45 4. Применение лазерной спектроскопии в анализе объектов окружающей среды Применение метода лазерной искровой спектроскопии в экологических исследованиях. Проблема загрязнения морей приобретает все более глобальный характер. Прогрессирующее загрязнение морской воды связано со...