Атомная батарейка для цод. Портативный ядерный реактор разработан в новосибирске

Как подумаю, какими темпами идет прогресс, становится жаль всех аналитиков, составляющих разного рода прогнозы. Мне вот вспомнился сюжет из «Ералаша», где паренек продавал суперумные часы (умеют считать, писать и все такое) и два чемодана батареек к ним. А сейчас уже и карманным компом никого не удивишь. Еще 10 лет назад и ПК-то не у всех дома были, а сейчас и домашняя АЭС - уже реальность.

Вот недавно прочитала , что американские ученые обещают в течение 5 лет выпустить в продажу мини-АЭС. По замыслу создателей, такой компактный ядерный реактор рассчитан на обеспечение энергией небольших посёлков, деревень и городков. Модуль Hyperion power с ядерным реактором внутри обладает энергетической мощностью около 25 МВт - этого достаточно для обеспечения электроэнергией поселения с 20 тысячами жителей.


Электроэнергию реактор будет производить круглосуточно, при этом 1 киловатт-час обойдется американцам всего лишь в 10 центов. Миниатюрный реактор по размеру ненамного превышает собачью конуру (полтора метра в высоту), и в его комплектации нет ни одной переносной детали, а наиболее важные функционирующие элементы реактора будут зарывать под землю, что делает воровство практически невозможным.

Представители компании Hyperion, которой правительство США уже выдало лицензию на производство таких ядерных реакторов, подсчитали, что мини-электростанция будет стоить приблизительно 25 миллионов долларов, что для населенного пункта хотя бы с 10 тысячами домов, по американским меркам, вовсе не дорого - по 2500 долларов на брата. Кстати, у прогрессивных толстосумов появится лишний повод похвастаться перед соседями: 25 миллионов долларов - и собственная АЭС у тебя в кармане, простите, на дому. (Подумаешь, личный остров прикупил, у меня вот в саду ядерный реактор зарыт:).

Ученые подчёркивают массу выгод, которые принесёт такой портативный ядерный реактор. АЭС являются одними из наиболее надёжных источников энергии в мире, и модульный реактор очень непросто было бы взорвать или вывести из строя. Несмотря на стальной корпус Hyperion еще и закатан в бетон (в данном случае такие жесткие меры вполне оправданны), а наружу выходят только несколько труб. Подобраться к уже закопанному реактору смогут только сами установщики, чтобы поменять ядерное топливо. Освежать заряд придется, по разным данным, каждые 5-7 лет.

Террористов такой реактор тоже не заинтересует - из имеющегося в устройстве ядерного топлива оружейный плутоний не изготовишь. А самое главное, в наш век лозунгов о защите окружающей среды у владельцев появится реальная возможность улучшать экологию, не выходя из дома: я вот уменьшаю выбросы парниковых газов и тем самым отодвигаю глобальное потепление. Чем не повод для гордости?

Заказчиков долго уговаривать не пришлось. Первыми уже подсуетились наши братья славяне: чешская компания TES уже приобрела несколько реакторов. Всего же у разработчиков компактной АЭС уже более сотни заказов от различных промышленных компаний. Так что еще каких-нибудь 10-20 лет, и о ядерном ренессансе можно будет беседовать с соседом по даче на освященной за счет крошечной АЭС улице.

***
У нас в России над уменьшением размеров ядерных реакторов работают уже давно. Ученые в Курчатовском институте уже лет 30 назад разработали атомную электростанцию малых размеров, причем не нуждающуюся в персонале вообще. Прототип ее работает на территории Курчатовского института уже лет пятнадцать. Это установка «Гамма», а сама станция называется «Елена».

Ядерная термоэлектрическая «Елена» представляет собою цилиндр диаметром 4,5 и высотой 15 метров. Вес этой «дамочки» достаточно внушительный» - 168 тонн. Поэтому для удобства установки она разбирается на блоки около 20 тонн, которые можно доставить в любую точку страны и собрать на месте за 3-4 месяца. Теплофикационная мощность «Елены» - около трех мегаватт, а электрическая - порядка 100 киловатт. Этого достаточно, чтобы обеспечить теплом и светом небольшой поселок. Станция монтируется в шахте глубиной 15-25 метров и наглухо закрывается мощными бетонными перекрытиями. И ей не страшны ни землетрясение силой до 8 баллов, ни падение самолёта со взрывом его горючего и пожаром.

Трагедии на Чернобыльской АЭС и АЭС «Фукусима» пошатнули уверенность человечества в том, что за атомной энергетикой будущее. Некоторые из стран, такие, как Германия, вообще пришли к выводу, что от АЭС следует отказаться вовсе. Но вопрос использования атомной энергетики очень серьезный и крайностей в выводах не терпит. Тут надо четко оценить все плюсы и минусы, и скорее – искать золотую середину и альтернативные решения использования атома.

В качестве источников энергии на Земле сегодня используются органические ископаемые, нефть, газ; возобновляемые источники энергии – солнце, ветер, древесное топливо; гидроэнергия – реки и всевозможные пригодные для этих целей водоемы. Но запасы нефти и газа истощаются, соответственно, дорожает и энергия, полученная с их помощью. Энергия, получаемая с помощью ветра и солнца – достаточно затратное удовольствие, в силу дороговизны солнечных и ветровых электростанций. Возможности энергии водоемов тоже очень ограничены. Поэтому многие ученые все же приходят к выводу, что если в России закончатся запасы нефти и газа, альтернативы отказа от ядерной энергетики, как источника энергии, очень малы.Доказано, чтомировые ресурсы ядерного горючего, такого, как плутоний и уран во много раз превышают энергоресурсы природных запасов органического топлива. Работа же самих АЭС имеет ряд преимуществ перед другими электростанциями. Их можно строить везде, независимо от энергетических ресурсов района, топливо АЭС отличается очень большим содержанием энергии, эти станции не делают в атмосферу вредных выбросов, таких как ядовитые вещества и парниковые газы, и стабильно дают самую дешевую энергию.В мировом рейтинге по уровню ТЭС Россия очень сильно отстает, а по показателям АЭС – мы являемся одними из первых, поэтому для нашей страны отказ от атомной энергетики может грозить большой экономической катастрофой. Тем более именно в России особенно актуальны отдельные вопросы в развитии атомной энергетики – такие, как строительство мини АЭС. Почему? Тут все очевидно и просто.

Проект одной из АСММ — «Унитерм»

Атомные реакторы малой мощности (100-180 МВт) уже несколько десятков лет успешно используются в судоходстве нашей страны. В последнее время все чаще начинают говорить о необходимости их использования для обеспечения энергией отдаленных районов России. Тут малые АЭС смогут решить проблему энергоснабжения, которая всегда стояла остро во многих труднодоступных регионах. Две трети России – зона децентрализованного энергоснабжения. Прежде всего, это Крайний Север и Дальний Восток. Уровень жизни здесь во многом зависит от энергообеспечения. Кроме того, данные регионы представляют собой большую ценность в силу большого сосредоточения полезных ископаемых. Их добыча не развивается или останавливается зачастую именно по причине большой затратности в сфере энергетики и транспорта. Энергия здесь поступает от автономных источников, использующих органическое топливо. А завоз такого топлива в труднодоступные районы обходится очень недешево по причине необходимых огромных объемов и большого расстояния. Например, в республике Саха в Якутии, в силу разорванности энергетической системы на маломощные изолированные участки, стоимость электроэнергии больше в 10 раз, чем на «большой земле». Совершенно ясно, что для большой территории с низкой плотностью населения проблема развития энергетики не может решиться крупным сетевым строительством. Атомные станции малой мощности (АСММ) — один из самых реальных выходов из ситуации в данном вопросе. Ученые уже насчитали 50 регионов в России, где нужны подобные станции. Они, конечно, проиграют по стоимости электроэнергии большому энергоблоку (строить его здесь просто нерентабельно), но выиграют у источника на органическом топливе. По подсчетам специалистов АСММ могут сэкономить до 30% стоимость электроэнергии в труднодоступных регионах. Маленькие объемы расходуемого топлива, удобства в перемещении, небольшие трудозатраты по вводу в работу, минимум обслуживающего персонала – эти характеристики делают АСММ незаменимыми энергоисточниками в дальних районах.

Незаменимость АСММ уже давно осознали и во многих других странах мира. Японцы доказали, что подобные станции будут очень эффективны в условиях мегаполисов. Работы одного отдельного такого устройства достаточно для того, чтобы снабдить энергией определенное количество жилых домов или небоскребов. Маленьким реакторам не требуется дорогое и подчас отсутствующее место для их размещения в мегаполисе. Также, японские разработчики уверяют, что эти реакторы могут компенсировать пиковые нагрузки в крупных городских зонах. Японская компания Toshibа уже длительное время разрабатывает проект АСММ — Toshiba 4S. Срок его эксплуатации по прогнозам разработчиков – 30 лет без перезагрузки топлива, мощность – 10 МВт, габариты — 22 на 16 на 11 метров, топливо такой мини-АЭС — металлический сплав плутония, урана и циркония. Эта станция не требует постоянного обслуживания, а нуждается лишь в эпизодическом контроле. Такой реактор японцы предлагают использовать и при добыче нефти, а их серийный выпуск хотят наладить к 2020 году.

Не отстают от Японии и американские ученые. В течение нескольких лет они обещают выпустить в продажу небольшой ядерный реактор, который будет обеспечивать энергией небольшие поселки. Мощность такой станции – 25 МВт, по размеру она немногим больше собачьей конуры. Электроэнергию эта мини-АЭС будет вырабатывать круглосуточно и ее стоимость за 1 киловатт-час составит всего 10 центов.Надежность тоже на высшем уровне: помимо стального корпуса, Hyperion закатан в бетон.Менять ядерное топливо здесь смогут только специалисты, и делать это надо будет каждые 5-7 лет. Выпускающая компания Hyperion, уже получила лицензию на выпуск таких ядерных реакторов. Приблизительная стоимость станции 25 миллионов долларов. Для городка, хотя бы с 10-ю тысячами домов – совсем недорого.

Что касается России, то здесь над созданием малых АЭС работают достаточно давно. Учеными Курчатовского института 30 лет назад была разработана мини – АЭС «Елена», которая вообще не нуждается в обслуживающем персонале. Ее прототип функционирует на территории института до сих пор. Электрическая мощность станции – 100 КВт., она представляет собой цилиндр весом в 168 тонн, диаметром — 4,5 и высотой — 15 метров. «Елена» устанавливается в шахте на глубине 15-25 метров и закрывается бетонными перекрытиями. Ее электроэнергии хватит на обеспечение теплом и светом небольшого поселка. В России разработано еще несколько проектов, подобных «Елене». Все они соответствуют необходимым требованиям надёжности, безопасности, недоступности для посторонних, нераспространении ядерных материалов и т.д., но требуют немалых строительных работ при установке и не соответствуют критериям мобильности.

В 60-е годы прошла испытания малая передвижная станция «ТЭС-3». Она состояла из четырех гусеничных самоходных транспортеров, поставленных на усиленную базу танка Т-10. На двух транспортерах были размещены парогенератор и водяной реактор, на оставшихся поместили турбогенератор с электрической частью и систему управления станцией. Мощность такой станции составила -1,5 МВт.

В 80-е годы в Беларуси разработали малую АЭС на колесах. Станцию назвали «Памир» и поставили на шасси МАЗ-537 «Ураган». Ее составили четыре автофургона, которые были соединены газовыми шлангами высокого давления. Мощность «Памира» составила 0,6 МВт. Станция в первую очередь предназначалась для работы в широком диапазоне температур, именно поэтому была оснащена газоохлаждаемым реактором. Но, произошедшая как раз в эти годы Чернобыльская авария, «автоматом» уничтожила проект.

Все эти станции имели определенные проблемы, которые препятствовали их широкому внедрению в производство. Во-первых, невозможность обеспечить качественную защиту от излучения по причине большого веса реактора и ограниченной грузоподъемности транспорта. Во-вторых, эти мини-АЭС работали на высокообогащенном ядерном топливе «оружейного» качества, что противоречило международным нормам, которые запрещали распространение ядерного оружия. В-третьих, для самоходных атомных станций было сложно создать защиту от дорожных происшествий и террористов.

Весь спектр требований к АСММ удовлетворила плавучая атомная теплоэлектростанция. Она была заложена в Санкт-Петербурге в 2009 году. Данная мини-АЭС состоит из двух реакторных установок на гладкопалубном несамоходном судне. Срок ее эксплуатации – 36 лет, в течение которых, через каждые 12 нужно будет перезагружать реакторы. Станция может стать эффективным источником электричества и тепла для труднодоступных регионов страны. Еще одна из ее функций – опреснение морской воды. В сутки она может выдавать от 100 до 400 тысяч тонн. В 2011 году проект получил положительное заключение государственной экологической экспертизы. Не позднее 2016 года плавучую АЭС планируют разместить на Чукотке. Росатом ожидает от этого проекта больших зарубежных заказов.

Также недавно стало известно, что одна из подконтрольных Олегу Дерипаске компаний — «Евросибэнерго», вместе с Росатомом объявила об организации предприятия «АКМЭ-Инжиниринг», которое будет работать над созданием АСММ и заниматься их продвижением на рынке. В работе этих станций хотят использовать реакторы набыстрых нейтронах со свинцововисмутовым теплоносителем, которыми в советское время были оснащены атомные подлодки. Обеспечивать энергией они призваны отдаленные районы, неподключенные к электросетям. Организаторы предприятия планируют заполучить 10-15% мирового рынка мини-АЭС. В успехе данной кампании аналитиков заставляет сомневаться заявленная стоимость станции, которая по прогнозам «Евросибэнерго» будет равняться стоимости ТЭЦ такой же мощности.

Успех малых АЭС на рынке мировой энергетики предвидеть несложно. Необходимость их присутствия там очевидна. Решаемы и вопросы с усовершенствованием этих источников энергии и приведением в соответствие к необходимым параметрам. Глобальной лишь остается проблема стоимости, которая на сегодняшний день в 2-3 раза больше АЭС в 1000 МВт. Но уместно ли такое сравнение в данном случае? Ведь у АСММ совершенно другая ниша в использовании – они должны обеспечивать автономных потребителей. Никто же из нас не додумается сравнивать стоимость киловатт, расходуемых часами, работающими от батарейки, и микроволновкой, которая запитана от розетки.

07.03.2010 (7:56)
Просмотров: 17308
Рейтинг: 1.09
Голосов: 47
Теги:
электростанция , реактор , ARPA-E ,
>>



Ваша оценка
-2 -1 0 1 2
Весь бюджет Министерства Энергетики США составляет 10 миллиардов долларов, включая затраты на рекультивацию территорий, занятых закрываемыми генерирующими мощностями и вспомогательными объектами, программы энергосбережения, разработку возобновляемых источников энергии. Этого достаточно, чтобы «либо построить суперколлайдер для фундаментальных целей, либо одну атомную электростанцию для прикладных нужд», - заявила Кристина Джонсон (Kristina Johnson, помощник министра энергетики США) на конференции Агентства Передовых Исследовательских Проектов Энергетики (ARPA-E) 3-го марта. Иными словами, ядерная энергетика не из дешевых.

Хотя оценки разнятся, нет сомнений в том, что стоимость пуска [так называемая стоимость первого ватта] типичной атомной электростанции с реактором на легкой воде, использующим малообогащенный уран в качестве топлива, высока в сравнении с любыми альтернативами. Однако, 70% электроэнергии в США, произведенной без непосредственных выбросов углекислого газа, приходится на ядерную энергетику. Есть ли способы сделать ее дешевле?

Мини атомный реактор - это одна из идей в создании небольших закрытых «реакторных модулей», подобных разрабатываемому в Лос-Аламосской Национальной Лаборатории и уже представленному компанией Hyperion Power из Санта Фе. Компания намерена продавать закрытый реактор шириной 1,5 метра и высотой 2,5 метра, мощностью 25 мегаватт по цене 50 миллионов долларов, который будет устанавливаться под землей и прослужит по крайней мере 7 лет. Рекламные материалы, представленные на конференции, демонстрируют ничего кроме зеленого поля и дерева на нем, большая скрытая батарейка - посыл Hyperion Power.

Конечно, в реальности паровая турбина, генератор и устройство охлаждения будут расположены на этом же зеленом поле, вытеснив несколько деревьев с рекламного плаката. Реактор на быстрых нейтронах будет работать при более высоких температурах (около 500 градусов Цельсия), чем традиционные реакторы, что потребует охлаждение жидким металлом. Далее большая часть тепла будет передана воде для вращения турбины, вырабатывающей электроэнергию.

Эти небольшие реакторы в той же мере способны к неуправляемой цепной реакции с расплавлением активной зоны, как и традиционные реакторы, поэтому имеют управляющие стержни для торможения реакции.

Hyperion Power не единственная компания продвигающая данную концепцию в реакторостроении. Хотя конструкции варьируются, свои проекты похожих небольших реакторов имеют компании Toshiba, Babcock & Wilcox и др. со своими потенциальными клиентами, например, городок Галена на Аляске с населением в 700 человек. Тем не менее, Комиссия по Ядерной Регламентации США (NRC, Nuclear Regulatory Commission) отказалась рассматривать эти небольшие реакторы, сконцентрировав свои усилия на возрождении обычных технологий.

Но позиция NRC может измениться. В феврале этого года NRC опубликовала призыв к потенциальным производителям малых реакторов (мощностью менее 700 мегаватт, по положениям NRC) сообщить о возможных в будущем запросах на площадки, лицензирование и сертификацию для планирование регулирующим органом своей рабочей нагрузки. По словам Дебора Блэквелла (Deborah Blackwell, вице-президента компании Hyperion Power), его компания не ждет NRC и планирует уже к 2013 году начать поставки своего нового продукта в разные части света.

Наши гаджеты с каждым годом становятся все меньше, легче, экономнее. Это - очевидная, необратимая тенденция. Покупая в Applestore свой ультратонкий iBook, мало кто из нас думает, что за этим и подобными ему миловидными созданиями стоят мега-дата-центры. Зачастую это уродливые по дизайну, пожирающие несметное количество энергии инфраструктурные узлы, такие себе монстры, что обеспечивают наш повседневный комфорт. Прямо или посредственно уменьшение наших гаджетов вызывает увеличение ЦОДов. Благодаря повсеместному появлению высокоскоростного интернета разработчикам планшетов, смартфонов удается все большую часть физических ресурсов из портативных приспособлений переместить в удаленные ЦОДы. Современные дата-центры в отличие от своих ранних версий, размещенных в небольших подсобных помещениях при научных и деловых учреждениях, скорее напоминают сталепрокатные заводы, как по площади, так и по потребляемым ресурсам, а по уровню режима охраны не уступают порой и военным базам. Все указанные выше факторы и передовые разработки ученных в сфере создания портативных ядерных реакторов наталкивают на мысль, а что если…

Энергетические пожиратели

Как говорится: «Маленькие дети – маленькие проблемы, большие дети - большие проблемы». Это применимо и к потреблению электроэнергии дата-центрами. Как показывает статистика, чем крупнее ЦОД, тем более близок его PUE к единице, ведь чем больший масштаб дата центра, тем более целесообразны там инвестиции по увеличению его энергоэффективности. В то время как коэффициент PUE для малых дата центров может перевалить и за 4.0, у больших ЦОДов он за частую не превышает значения в 2.0. Но, даже имея на руках такую статистику, масштабы дата-центров, скажем, от Google или Facebook, не оставляют шансов энергетическим сетям тех регионов, где они возводятся.

В то время как большинство телекоммуникационных гигантов тщательно скрывают свою внутреннею информацию, детище Цукерберга делится ею со всеми желающими, и вот выдержки из нее.

По данным за 2013 год на функционирование всех дата центров от Facebook было истрачено 787 000 мегаватт электроэнергии. Учитывая общее количество серверов корпорации, эксперты в общем сходятся на цифре в 200 000, моментальное потребление энергии одного сервера в среднем составляет около 0.45 киловатт. И не стоит забывать, что эти данные актуальны для дата центров с усредненным феноменальным коэффициентом PUE 1.09!

Цифры воистину впечатляющие. К примеру, дата-центры, размещенные в Приневиле и Форест Сити, потребляют энергии больше, нежели их города-спутники с населением около 10 тысяч человек. Такое положение вещей является вызовом для всей существующей инфраструктуры, электросети, конечно же, не исключение. Что делать? Одним из ответов на этот вопрос может стать разработанный доктором Оттисом Питом Петерсоном, работающим в Национальной Лаборатории Лос-Аламос (США), портативный ядерный реактор.

АЭС Hyperion – портативная атомная электростанция


Разработанная еще в 2008 году, мини-АЭС впечатляет своими характеристиками. По заявленным данным «Hyperion» являет собой реактор мощностью порядка 25 МВт в подземной компоновке, способный обеспечить электричеством 20 тысяч частных домов. Это модульный реактор, и с ростом потребностей вполне возможно подключать дополнительные модули на выбранной площадке. Реактор целиком автоматизирован и не требует обслуживания персоналом. Единственное, что отводится человеку - это мониторинг. По проекту блок настроен так, чтобы немедленно глушиться при возникновении значительных отклонений от режимов нормальной эксплуатации.

Срок службы реактора от 5 до 10 лет без перегрузки, после чего он будет отправляться для заправки новой порцией ядерного горючего на завод. В реакторе используется уран-гидридное топливо, причём обогащение урана выбрано менее 20%. Цена такого изделия варьируется от 25 до 30 миллионов долларов.

По расчетам проектантов цена одного киловатта вырабатываемого мини АЭС не превысит 10 американских центов, что в свою очередь даже дешевле чем в среднем стоимость по США. Также в актив такого решения можно записать отсутствие дополнительных издержек на модернизацию всей электросети территории, необходимость в которой естественно возникает при возведении на ней такого активного потребителя энергии как ЦОД.

Специфика функционирования дата-центров

Анализируя возможность применения портативных АЭС в условиях дата-центров, не стоит забывать про те технические условия, с которыми сталкиваются ЦОДы.

Очевидными плюсами такого решения являются 100% подконтрольность источника энергии. Риски обрыва высоковольтной линии где то за сотни километров, естественно, исключаются, так как вся инфраструктура размещается в границах одной площадки. Защищенность от перегрузок электросети совместными пользователями магистральной линии - тоже очевидный плюс. Также появляется возможность размещения огромных дата-центров в отдаленных районах крайнего сервера с наилучшими климатическими условиями для его более эффективного функционирования (при условии решения проблемы с каналами связи).

Проблемы могут возникнуть со спецификой функционирования ядерного реактора, диапазон изменения нагрузок на него может быть очень ограниченным и довольно инертным, что в условиях каждодневных всплесков активности в работе ЦОД может составить проблему. Также не стоит забывать про дублирование источника энергии, в качестве которого еще один реактор - вещь довольно сомнительная по причине все того же отсутствия гибкости источника. Проблемы с безопасностью становятся еще более острыми. Любой ядерный реактор может стать целью террористов, что просто обязывает эксплуатирующую его компанию особо ответственно отнестись к безопасности объекта, а это, конечно, дополнительные расходы. Также на пути распространения такого рода технологий может стать национальное законодательство целого ряда стран, которое просто запрещает размещение на своей территории ядерных технологий.

Экологичность

Экономика решения применить портативную АЭС вполне логична, но на сколько оно будет экологично? Не вызовет ли социальный протест «закопанная за соседней спорт-площадкой АЭС»?

Как видно из выше приведенных материалов, любезно предоставленными сотрудниками Facebook, можно проанализировать структуру потребляемой электроэнергии их дата центрами. Хоть она и весьма условна, но общую картину дает.

Как можно видеть, только за последние два года часть в потреблении серверной инфраструктурой атомной энергии увеличилась почти вдвое, в то время как часть восстанавливаемой энергетики почти вдвое уменьшилась. Удивительного тут ничего нет, ведь только атом может гарантировано прокормить такого гиганта. Что говорить, а ведь дата центры от Facebook далеко не самые крупные представители своего рода (ни единого ЦОД среди Топ 10 самых крупных).

В то время когда «зеленая» энергетика просто не в силах насытить возрастающие потребности потребителей, ядерная энергия приходит на помощь, и ветряками тут никак не обойдешься. Если же сравнивать традиционные электростанции на углеводородах, то вопросов по экологичности к ним возникает поболее, нежели к мирному атому. Все это чудесно понимают и готовы с этим мирится, но, как это часто водится, если стоит этот реактор «не на соседней улице».

Итог

Насколько бы не звучало всё вышеизложенное вызывающе, а для кого-то, может быть, даже дико, прогресс не остановить. ИТ-бизнес с каждым годом все более набирает вес. Легкость и дешевизна решений, которые нам предлагают на каждом шагу компании, несет за собой невидимый груз сложных вопросов и выбора. Куда нас заведет прогресс в погоне за функциональность и дешевизной наших девайсов - покажет только будущее. ТЭС-3 - транспортабельная атомная электростанция, перевозимая на четырёх самоходных гусеничных шасси, созданных на базе тяжёлого танка Т-10

Теги: Добавить метки

Ученые института ядерной физики имени Будкера в понедельник представили общественности свою новейшую разработку – домашний энергетический ядерный реактор МАЭС-2014. Впервые в мире специалистам удалось достичь максимальной безопасности при сверхкомпактных размерах устройства.

Как рассказал руководитель проекта, академик Яков Иоффе, устройство относится к классу так называемых реакторов с бегущей волной (Traveling-Wave Reactor). Такое название данный тип энергетических установок получил из-за серьезных отличий от классической схемы ректора – здесь ядерная реакция происходит в очень ограниченном регионе активной зоны, который постепенно перемещается и ведет себя как волна. Разработки такого реактора начались в США в середине 2000-х годов, однако добиться прогнозируемого поведения устройства американские специалисты не смогли.

Новосибирский реактор работает на низкообогащенном уране, что существенно снижает себестоимость установки. Замедлителем в реакторе выступает обычная вода, устройство управляется регулирующим стержнем из карбида бора. Из-за особенностей конструкции критическая масса урана, необходимая для начала реакции, снижена более чем в десять раз. Это, а также низкое выделение тепла, позволило добиться сверхкомпактного размера. Реактор вполне может поместиться в подвале или гараже, отмечают разработчики.

Испытания показали, что установка способна выдавать электрическую мощность в 0,5 мегаватт, что хватит на несколько десятков домохозяйств или малое промышленное предприятие. Цена ядерного электричества также вполне доступна – себестоимость киловатт-часа находится на уровне двух рублей.

Особо подчеркивается, что для управления реактором не нужно будет получать специальные допуски. Устройство уже сейчас имеет двойную систему безопасности. При критических изменениях в корпусе реактора активная зона немедленно заливается раствором борной кислоты, что приводит к мгновенной остановке ядерной реакции. Перед выводом на рынок систему планируется усилить – оснастить системой контроля, которая будет вести мониторинг в режиме реального времени и отправлять все данные через Wi-Fi на компьютер или смартфон владельца.

Без перезарядки разработанный новосибирскими учеными ректор может проработать шестьдесят лет. После этого устройство необходимо будет утилизировать. Эту услугу планируется оказывать на базе института.

Точная стоимость установки пока не называется, однако ученые уверены, что в будущем домашний ядерный ректор станет доступен практически для каждой российской семьи. Источник в институте сообщил что в продаже реактор может появиться по цене в 150 тысяч рублей. Начало продаж запланировано на 2016 год – после завершения всех испытаний и получения сертификатов, подтверждающих безопасность устройства.