Излучение на производстве. Защита от ионизирующего излучения Виды производственных излучений охрана труда

1. Виды излучений, применяемые в сельскохозяйственном

производ­стве.

2. Ионизирующие излучения.

3 Электромагнитное радиоизлучение.

4. Инфракрасное излучение.

5. Световое излучение.

7. Лазерное излучение.

1. Виды излучений, применяемые в сельскохозяйственном производ­стве.

Переход сельскохозяйственного производства на промышленную основу связан с широким применением в технологических процессах различных видов излучений и электромагнитных полей высокой и сверхвысокой частоты.

Инфракрасное излучение используется для обогрева, ультрафиолетовое излучение - для облучения животных и бактерицидной обработки помещений Электромагнитные поля возникают при использовании электротермических ус­тановок индукционного и диэлектрического нагрева, лазерное излучение -при работе оптических квантовых генераторов (лазеров). Ионизирующие излучения используются в сельском хозяйстве для борьбы с насекомыми, стерилизации пищевых продуктов, в диагностических и исследовательских целях.

Все эти излучения могут оказывать вредное воздействие на здоровье че­ловека, поэтому необходимо нормирование и защита от их воздействия на жиз­ненно важные органы и системы человека.

К ионизирующим излучениям относятся корпускулярные (альфа, бета -нейтроны) и коротковолновые электромагнитные излучения (гамма- и рентге­новское), способные при взаимодействии с веществом вызывать ионизацию атомов.

Все ионизирующие излучения характеризуются проникающей и ионизи­рующей способностью:

а - имеют наибольшую ионизирующую и наименьшую проникающую способность.

(} - имеют меньшую ионизирующую, но более высокую проникающую способность.

у - имеют наименьшую ионизирующую, но наибольшую проникающую способность.

Рентгеновское (Х-) излучение имеет ту же природу, что и у - излучение, но отличается большей длиной волны и, соответственно, меньшей ионизирующей способностью.

Воздействие ионизирующих излучений на биологические ткани ведет к разрушению межмолекулярных связей, изменению их структуры и гибели ор­ганизмов. У человека наиболее уязвимыми являются органы кроветворения и железы внутренней секреции.

Для оценки радиации используется понятие активности, а также экспози­ционной, поглощенной, эквивалентной и эффективной дозы.

1. Активность радиации - число распадов атомных ядер в единицу вре­мени. Единица активности - Беккерель (Бк).

1 Беккерель (Бк) = 1 распад/с Внесистемной единицей является Кюри(Ки):

1 Ки = 3,7 ■ 10 ю Бк (в 1с 3,7 10 10 распадов).

2. Экспозиционная доза характеризует ионизирующую способность излучения в воздухе, т.е. радиационный фон.


Единицей экспозиционной дозы является кулон/кг (Кл/кг), внесистемная единица - рентген (Р). Используются производные единицы- мР и мкР. Под уровнем радиации понимается экспозиционная доза, отнесенная ко времени (Р/ч). На земной поверхности уровень радиации, образованный природным фо­ном находится в пределах 3-25 мкР/ч.

3. Поглощенная доза - энергия излучения, поглощенная 1 кг массы облучаемого объекта. Единица поглощенной дозы- Грей.

Бтк = Е/т = Дж/кг = 1 Грей (система СИ). В практических измерениях используется также внесистемная единица - радиан (рад).

В связи с тем, что одинаковая поглощенная доза различных видов излу­чений оказывает разное биологическое действие, введено понятие эквивалент­ной дозы.

4. Эквивалентная доза используется для оценки радиационной опасности хронического облучения. Единица эквивалентной дозы - Зиверт. Используется также внесистемная единица - БЭР (биологический эквивалент рада).

1 Зв = 100БЭР

Эквивалентная доза определяется умножением поглощенной дозы Отк на коэффициент тяжести ^ц данного вида излучения.

Н Т к = Отк " ^к (Дж/кг - Зиверт) ^к колеблется от 20 (для а - излучения, потоков тяжелых ядер и осколков деления) до 10 (быстрые нейтроны и протоны) и 1 (фотоны, (3-, и рентгеновское излучения).

Облучение может быть внешним - когда источник излучения находится снаружи и внутренним - при попадании радионуклидов внутрь организма через легкие, ЖКТ и кожу.

5. Эффективная доза - полученная за определенное время поступления радионуклидов в организм. Она позволяет оценить риск отдаленных последствий облучения отдельных органов и тканей с учетом их различной радиочувствительности.

Е = I ^т Нт т где: взвешивающий коэффициент для ткани Т,

Нтт - эквивалентная доза для ткани Т за время т Единица измерения эквивалентной дозы также Зиверт. Значения ^т ко­леблются от 0,2 (костный мозг) до 0,12 (легкие, желудок) и 0,05 (печень, под­желудочная железа).

Получение дозы 0,2-0,3 Зв вызывает появление в организме обратимых изменений (в частности, в формуле крови), 0,8-1,2 Зв - начальные признаки лу­чевой болезни (тошнота, рвота, головокружение, тахикардия), 2,7-3,0 Зв - раз­вивается острая лучевая болезнь, 7,0 Зв и более даже при однократном облуче­нии приводит к летальному исходу.

При работе с радиоактивными материалами следует учитывать, что био­логическое действие излучения сопровождается эффектом кумуляции (накоп­ления). Радиоактивное облучение способно вызывать в отдаленных последст­виях лейкозы, злокачественные новообразования и раннее старение.

Гигиеническая регламентация ионизирующего излучения проводится в соответствии с нормами радиационной безопасности НРБ-99 (СП-2.6.1.758-99 -санитарные правила). Для персонала радиационно-опасных объектов годовая эквивалентная доза не должна превышать 20 мЗв, для населения - 1 мЗв

Основными средствами защиты от ионизирующих излучений являются стационарные и передвижные защитные экраны, контейнеры и защитные сейфы, предназначенные для хранения и транспортировки радиоактивных источ­ников II ОТХОДОВ.

3. Электромагнитное радиоизлучение

Спектр электромагнитных колебаний по частоте достигает 10 21 Гц. В зави­симости от энергии фотонов (квантов) его подразделяют на область ионизи­рующих и неионизирующих излучений. Характер и степень воздействия на ор­ганизм человека электромагнитных излучений зависят от интенсивности, вре­мени воздействия и длины волны. Биологическая активность электромагнитно­го излучения (ЭМИ) возрастает с уменьшением длины волны.

Радиоволны НЧ - диапазон - км ______

ВЧ - десятки, сотни м ________________________

УВ Ч____________________________________

СВЧ - дм, см, мм _______

Неионизирующие ЭМИ ИК - 0,7 - 1000 мкм _____

Свет - 0,4 - 0,7 мкм______

__________________ УФ-0,1-0,4 мкм _____ ~

Ионизирующие ЭМИ X - 0,001 - 0,01 мкм _____

У - менее 0,0 01 мкм (менее 1_нм)

ЭМИ радиочастотного диапазона большой интенсивности вызывает тепло­вой эффект. Облучение глаз может привести к помутнению хрусталика (ката­ракта) - особенно при воздействии волн в диапазоне 300 МГц - 300 ГТц

При длительном воздействии ЭМИ с другими значениями длин волн воз­никают различные функциональные расстройства, связанные со сдвигами эн-докринно-обменных процессов и состава крови. В связи с этим могут появлять­ся головные боли, повышенное или пониженное артериальное давление, уре-жение пульса, изменение проводимости в сердечной мышце, нервно - психиче­ские расстройства, быстрая утомляемость, возможны также трофические нару­шения: выпадение волос, ломкость ногтей. На ранней стадии изменения носит обратимый характер, но при продолжающемся воздействии ЭМИ приобретают стойкий характер. В пределах радиоволнового диапазона наибольшую биоло­гическую активность имеет СВЧ - излучение.

В основе гигиенического нормирования ЭМИ положен принцип дейст­вующей дозы, учитывающей энергетическую нагрузку на человека.

При гигиеническом нормировании воздействия ЭМИ у источников разли­чают 2 зоны воздействия:

Ближнюю (зону индукции), которая реализуется на расстоянии г < Х./6, в которой ЭМ поле еще не сформировалось.

Дальнюю г > 6% (ЭМ поле сформировалось)

В ближней зоне обе составляющие ЭМ поля - электрическая и магнитная в диапазоне 300 МГц - 300 ГГЦ - оцениваются поверхностной плотностью потока энергии (11ПЭ - Вт/.м 2). В этой зоне должны находится рабочие места но об­служиванию источников СВЧ - излучений.

В дальней зоне предельно допустимую плотность потока энергии в диапа­зоне часто! 300 МГц - 300 ГГЦ на рабочих местах устанавливают исходя из допустимого значения нагрузки на организм человека и времени его пребыва­ния в зоне облучения. Она не должна превышать!0 Вт/м". Предельную плот­ность потока энергии определяют по формуле:

где. \У к: - нормированное значение допустимой энергетической нагрузки на человека, Вт ч/м"; 2 - 20 Вт ч/м 2)

"Г - время пребывания в зоне облучения, ч

Основные способы защиты от ЭМИ:

1. Защита временем - ограничение времени пребывания персонала в
зоне облучения.

Т = \У Ы /ППЭ

2. Защита расстоянием - мощность излучения снижается пропорцио­нально квадрату расстояния от источника

3. Уменьшение мощности излучения - выбор рационального режима излучателя

4. Экранирование источников излучения, для чего используются ме­таллические экраны и токопроводящие покрытия

5. Экранирование рабочих мест - применяется при невозможности эффективной защиты другими способами.

4. Инфракрасное излучение

У инфракрасного (ИК) излучения наиболее интенсивное биологическое воздействие оказывает коротковолновая область. Оно обладает наибольшей энергией фотона, способно глубоко проникать в ткани организма. При этом наблюдается нагрев и интенсивное поглощение излучения водой, содержащей­ся в тканях. Наиболее поражаемые ИК-излучением органы у человека - кожный покров и органы зрения. Возможны ожоги и усиление пигментации кожи (эри-темия - покраснение). К острым поражениям органов зрения относятся ожог конъюктивы, возможна катаракта. ИК-излучение воздействует также на обмен­ные процессы в миокарде, водно-электролитический баланс в организме, со­стояние верхних дыхательных путей (ларингит, ринит), возможен и мутагенный эффект.

Нормирования ИК-излучения включает соблюдение гигиенических норма­тивов облучения, применение теплозащитных экранов и индивидуальной защи­ты - теплозащитных костюмов, масок, очков. При обслуживании ИК-установок, применяемых в животноводстве для местного обогрева (молодняка скота) типа ОИ-1, ОТ-1, ИКУФ-1, необходимо применение защитных очков.

5. Световое излучение.

Световое излучение - диапазон электромагнитных колебаний длиной 380-700 нм. Излучения видимого диапазона при высоких уровнях может пред­ставлять опасность для кожных покровов и органов зрения.

Широкополосное световое излучение больших энергий характеризуется световым импульсом, действие которого на организм приводит к ожогам от­крытых участков тела, временному ослеплению или ожогам сетчатки глаз. Ми­нимальная ожоговая доза для светового излучения составляет 3-8 Дж/см 2 .с, за время мигательного рефлекса - 0,15 с. Сетчатка может быть повреждена при длительном воздействии света умеренной интенсивности, в особенности при воздействии голубой части спектра 400-550 нм, оказывающей на сетчатку глаза специфическое фотохимическое воздействие.


6. Ультрафиолетовое излучение.

Ультрафиолетовое излучение имеет волновой диапазон 100-380 нм, кото­рый по биологическому действию разделяют на 3 области:

УФА.... 315-380 нм - оказывает слабое биологическое действие

УФВ.... 280-315 нм - оказывает сильное биологическое действие, вызыва­ет загар и синтез витамина Б.

УФС.... 100-280 нм - вызывает деструкцию тканевых белков и липидов, обладает бактерицидным действием.

УФ облучение усиливает окислительные процессы в организме и способ­ствует более активному выведению тяжелых металлов и других токсикантов. Оптимальные дозы УФ активируют деятельности сердца, обмен веществ, по­вышают активность ферментов, улучшают кроветворение.

УФ облучение от облучателей типа ЭО-1-30, ОБН-150, УГД-3 может вы­зывать ожоги открытых участков кожи, а также острые поражения глаз - элек­троофтальмию. Роговица глаз наиболее чувствительна к УФС, наибольшее воз­действие на хрусталик оказывает излучение в диапазоне 295-320 нм.

УФ облучение приводит к старению кожи, возможно развитие злокачест­венных новообразований. При этом отмечается кумуляция биологических эф­фектов. В комбинации с химическими веществами УФ приводят к сенсибили­зации - повышении чувствительности организма к свету с развитием фотоал­лергических реакций.

Гигиеническое нормирование УФ-излучения осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависи­мости от длины волны при условии защиты органов зрения и кожи.

Допустимая интенсивность УФ-облучения работающих при незащищен­ных участках кожи не более 0,2 м (лицо, руки). Общая продолжительность воздействия 50% рабочей смены не должно превышать 10 Вт/ м 2 для облучения УФА и 0,01 Вт/ м 2 для облучения УФВ. Излучение в области УФС не допуска­ется.

При использовании спецодежды и средств защиты лица и рук не пропус­кающих излучение (кожа, ткани с пленочным покрытием) допустимая интен­сивность облучения в области УВФ + УФС (200-315 нм) не должна превышать 1 Вт/м 2 .

7. Лазерное излучение.

Лазерное излучение - электромагнитные волны в диапазоне 0,01-1000 мкм (от рентгеновского до радиодиапазона). Отличие лазерного от других ви­дов излучение заключается в монохроматичности, когерентности и высокой степени направленности. При оценке биологического действия различается прямое, отраженное и рассеянное излучение. Эффекты воздействия определя­ются взаимодействием лазерного излучения с тканями (тепловой, фотохимиче­ский и ударно-акустический эффекты). Эффект воздействия зависит от длины волны излучения, длительности импульса, частоты следования импульсов, пло­щади облучаемого участка. Лазерное излучение с длиной волны 380-1400 нм представляет наибольшую опасность для сетчатки глаза, повреждение кожи может быть вызвано излучением с длиной волны в диапазоне 180-100000 нм.

При нормировании лазерного излучения устанавливают предельно допус­тимые уровни для двух условий облучения - однократного и хронического для 3-х диапазонов волн: 180-380 нм, 380 - 1400 нм и 1400 - 100000 нм. Нормируе­мым параметром, является энергетическая экспозиция Н и облученность Е. Нормируется также энергия и мощность Р излучения. Предельно допустимые уровни лазерного излучения различаются от длины волны, длительности оди­ночного импульса, частоты импульсов. Установлены различные ПДУ при воз­действии на кожу и глаза.

В зависимости от выходной мощности и ПДУ при однократном воздейст­вии генерируемого излучения по степени опасности лазеры разделяют на 4 класса:

1. полностью безопасные лазеры;

2. опасные для кожи и глаз только коллимированным (заключенным в ограниченном телесном угле) пучком;

3. опасные не только коллимированным, но и диффузно отраженным из­лучением на расстоянии 10 см от отражающих поверхностей (для глаз), на кожу это не действует;

4. опасные диффузно отраженным излучением для глаз и кожи на рас­стоянии 10 см от отражающей поверхности.

ТЕМА: ЗАЩИТА ОТ ВОЗДЕЙСТВИЯ ПРОИЗВОДСТВЕННЫХ ИЗЛУЧЕНИЙ

1. Электромагнитные поля, и их источники на производстве. Методы защиты от электромагнитных полей.

2. Воздействие лазерных излучений на организм человека и защита от них.

3. Защита от инфракрасного излучения.

4. Ионизирующие излучения и их характеристика. Воздействие ионизирующих излучений на организм человека.

Электромагнитное поле - область распространения электро­магнитных волн. Электромагнитное поле характеризуется частотой излучения f, Гц, или длиной волны л, м.

Электромагнитная волна распространяется в воздухе со скоро­стью света с = 300 000 км/с, и связь между длиной и частотой элек­тромагнитной волны определяется зависимостью л= с/f.

К источникам ЭМП на производстве относятся:

· изделия, специально созданные для излучения электромаг­нитной энергии: радио- и телевизионные вещательные станции, ра­диолокационные установки, физиотерапевтические аппараты, систе­мы радиосвязи, технологические установки в промышленности;

· устройства, не предназначенные для излучения электромаг­нитной энергии в пространство, но в которых при работе протекает электрический ток: системы передачи и распределения электроэнер­гии (линии электропередачи, трансформаторные и распределитель­ные подстанции) и приборы, потребляющие электроэнергию (электро­двигатели, электроплиты, холодильники, телевизоры и т.п.).

Электростатические поля создаются в энергетических установ­ках и при электротехнических процессах.

В зависимости от источни­ков образования они могут существовать в виде собственно электро­статического поля (поля неподвижных зарядов) или стационарного электрического поля (электрическое поле постоянного тока).

В промышленности ЭСП широко используются для электрогазо­очистки, электростатической сепарации руд и материалов, электро­статического нанесения лакокрасочных и полимерных материалов.

Статическое электричество образуется при изготовлении, транспортировке и хранении диэлектрических материалов, в помеще­ниях вычислительных центров, на участках множительной техники.

Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам.

Магнитные поля создаются электромагнитами, соленоидами, ус­тановками конденсаторного типа, литыми и металлокерамическими магнитами и другими устройствами.

В ЭМП различаются три зоны, которые формируются на раз­личных расстояниях от источника ЭМИ.

Первая зона - зона индукции (ближняя зона) охватывает про­межуток от источника излучения до расстояния, равного примерно л /2п = 1/6 л. В этой зоне электромагнитная волна еще не сформиро­вана и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо.

Вторая зона - зона интерференции (промежуточная зона) располагается на расстояниях примерно от л/2пдо 2п л. В этой зоне происходит формирование электромагнитной волны и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие.

Третья зона - волновая зона (дальняя зона) располагается на расстояниях свыше 2п л. В этой зоне электромагнитная волна сфор­мирована, электрическое и магнитное поля взаимосвязаны. На чело­века в этой зоне воздействует энергия волны.

Методы защиты от электромагнитных полей.

Общими методами защиты от электромагнитных полей и излучений являются следующие:

· уменьшение мощности генерирования поля и излучения не­посредственно в его источнике, в частности за счет применения по­глотителей электромагнитной энергии;

· уменьшение времени пребывания в поле и под воздействием излучения;

· экранирование излучения;

· применение СИЗ.

Уменьшение мощности излучения обеспечивается пра­вильным выбором генератора, в котором используют погло­тители мощности, ослабляющие энергию излу­чения.

Поглотителем энергии являются специальные встав­ки из графита или материалов из графита или углеродистого состава, а также специальные диэлектрики.

Для сканирующих излучателей (вращающихся антенн) в секто­ре, в котором находится защищаемый объект - рабочее место, при­меняют способ блокирования излучения или снижение его мощности. Экранированию подлежат либо источники излучения, либо зоны нахождения человека. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов.

Отражающие экраны вы­полняют из хорошо проводящих материалов, например стали, ме­ди, алюминия толщиной не менее 0,5 мм из конструктивных и проч­ностных соображений.

Кроме сплошных, перфорированных, сетчатых и сотовых экранов могут применяться: фольга, наклеиваемая на несущее основание; токопроводящие краски (для повышения проводимости красок в них добавляют порошки коллоидного серебра, графита, сажи, окислов ме­таллов, меди, алюминия), которыми окрашивают экранирующие по­верхности; экраны с металлизированной со стороны падающей элек­тромагнитной волны поверхностью.

Поглощающие экраны выполняют из радиопоглощающих мате­риалов. Естественных материалов с хорошей радиопоглощающей спо­собностью нет, поэтому их выполняют с помощью конструктивных приемов и введением различных поглощающих добавок в основу. В качестве основы используют каучук, поролон, пенополистирол, пено­пласт, керамико-металлические композиции и т.д. В качестве добавок применяют сажу, активированный уголь, порошок карбонильного железа и др. Все экраны обязательно должны заземляться для обес­печения стекания образующихся на них зарядов в землю.

Для увеличения поглощающей способности экрана их делают многослойными и большой толщины, иногда со стороны падающей волны выполняют конусообразные выступы.

Наиболее часто в технике защиты от электромагнитных полей применяют металлические сетки.

Они легки, прозрачны, поэтому обеспечивают возможность наблюдения за технологическим процес­сом и излучателем, пропускают воздух, обеспечивая охлаждение обо­рудования за счет естественной или искусственной вентиляции.

к СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащит­ные костюмы, комбинезоны, фартуки, очки, маски и т.д. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микро­проводом, выполняющим роль сетчатого экрана. Шлем и бахилы кос­тюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания.

Эффективность костюма может достигать 25...30 дБ. Для защи­ты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность защитных очков оценивается в 25...35 дБ.

Так же как и для других видов физических полей, защита от постоянных электрических и магнитных полей использует методы защиты временем, расстоянием и экранированием.

Лазерное излучение – представляет собой электромагнитное излучение, генерируемое в диапазоне длин волн 0,2-1000мкм.

Лазер – оптический квантовый генератор.

Лазер – генератор электромагнитного излучения оптического диапазона основанный на использовании вынужденного излучения.

Степень воздействия лазерного излучения на организм человека зависит от его интенсивности и частоты повторения импульсов, продолжительности воздействия, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Степень повреждения глаз может меняться от слабых ожогов до полной потери зрения.

Прямое воздействие лазерного излучения может привести к поражению глаз, кожи и других органов. Чувствительность роговицы и хрусталика глаз, а так же способность его оптической системы увеличивать плотность энергии видимого и инфракрасного диапазонов на глазном дне в 6*10 4 раза по отношению к роговице делают этот орган наиболее уязвимым.

Для выбора средств защиты следует учитывать класс степени опасности лазера:

· класс I (безопасные) - выходное излучение не представляет опасности для глаз и кожи;

· класс II (малоопасные) - выходное излучение представляет опасность для глаз прямым и зеркально отраженным излучением;

· класс III (опасные) - опасно для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от диф­фузно отражающей поверхности и для кожи прямое и зеркально от­раженное облучение;

· класс IV (высокоопасные) - опасно для кожи диффузно отра­женное излучение на расстоянии 10 см от отражающей поверхности.

Наиболее эффективным методом защиты от лазерного излучения является экра­нирование. На открытых площадках обозначаются опасные зоны и устанавливаются экраны, предотвращающие распространение излу­чений за пределы зон.

Непрозрачные экраны изготовляются из металлических листов (стали, дюралюминия и др.), гетинакса, пластика, текстолита, пластмасс.

Прозрачные экраны из специальных стекол светофильтров или неорганического стекла со спектральной характеристикой, соответст­вующей длине волны излучения лазера.

Приведение лазера в рабочее состояние обычно блокируется с установкой защитного устройства.

Работы с лазерными установками проводятся в отдельных поме­щениях или специально отгороженных частях помещения. Коэффици­ент естественной освещенности в таких помещениях должен быть не менее 1,5%, а общее искусственное освещение не менее 150 лк. Само по­мещение изнутри, оборудование и другие предметы не должны иметь зеркально отражающих поверхностей, если на них может падать пря­мой или отраженный луч лазера. При эксплуатации импульсных ла­зеров с высокой энергией излучения должно применяться дистанци­онное управление.

Средства индивидуальной защиты применяются при недоста­точности средств коллективной защиты. К СИЗ относятся: технологи­ческие халаты, перчатки (для защиты кожных покровов), специаль­ные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, светло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стекла­ми специальных марок, обеспечивающими защиту от лазерного излу­чения определенных диапазонов длин волн.

Инфракрасное излучение – часть спектра ЭМИ с длинной волны от 780 км до 1000 мкм.

Излучение бывает:

· локальным;

· длинноволновое (повышается температура);

· коротковолновое (изменяется температура легких, мозга, почек), воздействует на мозговую ткань, вызывает солнечный удар.

Для защиты от теплового излучения применяются средства кол­лективной и индивидуальной защиты.

Основными методами коллективной защиты являются : тепло­изоляция рабочих поверхностей источников излучения теплоты, эк­ранирование источников или рабочих мест, воздушное душирование рабочих мест, мелкодисперсное распыление воды с созданием водя­ных завес, общеобменная вентиляция, кондиционирование.

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,14 Вт/м 2 , темпе­ратуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100 °С.

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизо­ляции применяют материалы с низкой теплопроводностью.

Конструктивно теплоизоляция может быть мастичной, оберточ­ной, засыпной, из штучных изделий и комбинированной.

Мастичную изоляцию осуществляют путем нанесения на по­верхность изолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материа­лов - асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов.

Засыпная изоляция (например, керамзит) в основном использу­ется при прокладке трубопроводов в каналах и коробах.

Штучная изоляция выполняется формованными изделиями - кирпичом, матами, плитами и используется для упрощения изоляци­онных работ.

Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои - из мастичных и оберточных материалов.

Теплозащитные экраны применяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения темпе­ратуры поверхностей предметов и оборудования, окружающих рабочее место.

Теплозащитные экраны поглощают и отражают лучистую энер­гию. Различают теплоотражающие, теплопоглощающие и теплоотво­дящие экраны. По конструктивному выполнению экраны подразде­ляются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закреп­ленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих мате­риалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий - алюминиевую краску. Для непрозрач­ных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверх­ности экрана не более 30...35 °С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала.

В качестве полупрозрачных теплопоглощающих экранов ис­пользуют металлические сетки с размером ячейки З...3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие эк­раны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Прозрачные экраны изготовляют из бесцветных или окрашен­ных стекол - силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотво­дящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.

Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, соз­даваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

Средства индивидуальной защиты.

Применяется теплозащит­ная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тон­кий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащит­ными свойствами.

Ионизирующим называется излучение, которое прямо или кос­венно вызывает ионизацию среды. Ионизирующее излучение, как и электромагнитное, не воспринимается органами чувств человека, по­этому оно особенно опасно.

Естественными источниками ионизирующих излучений явля­ются высокоэнергетические космические частицы, а также рассеянные в земной коре долгоживущие радиоизотопы - калий-40, уран-238, уран-235, торий-232 и др., являющиеся источниками альфа- и бета-частиц, гамма-квантов и т.д. Распад урана и тория сопровождается образованием радиоактивного газа радона, который из горных пород постоянно поступает в атмосферу и гидросферу и присутствует в не­больших концентрациях повсеместно.

Искусственными источниками ионизирующих излучений яв­ляются радиоактивные выпадения от ядерных взрывов, выбросы атомных электростанций, заводов по переработке ядерного топлива, выбросы тепловыми электростанциями золы, содержащей естествен­ные радиоактивные элементы - торий и радий.

Виды ионизирующих излучений и их характеристики

Альфа-излучение представляет собой поток ядер гелия (состоящих из двух положительных протонов и двух нейтральных нейтронов), ис­пускаемых веществом при радиоактивном распаде или при ядерных ре­акциях. Их энергия не превышает нескольких МэВ.

Альфа-частицы обладают сравнительно большой массой, имеют низкую проникающую способность и высокую удельную ионизацию.

Бета-излучение - поток отрицательно заряженных электронов или положительно заряженных позитронов, возникающих при радио­активном распаде. Энергия бета-частиц не превышает нескольких МэВ.

Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значи­тельно меньшей массой и при одинаковой с альфа-частицами энергии имеют меньший заряд.

Нейтроны (поток которых образует нейтронное излучение) пре­образуют свою энергию в упругих и неупругих взаимодействиях с яд­рами атомов; при неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов (гамма-излучение). При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов существенно зависит от их энергии и состава атомов веще­ства, с которым они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение с очень короткой длиной волны (менее 0,1 нм), испускаемое при ядер­ных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Энергия его находится в пределах 0,01...3МэВ.

Рентгеновское излучение возникает в среде, окружающей источ­ник бета-излучения, в рентгеновских трубках, в ускорителях электро­нов и т.п. и представляет совокупность тормозного и характеристиче­ского излучения, энергия фотонов которых составляет не более 1 МэВ.

Как и гамма-излучение, рентгеновское излучение обладает ма­лой ионизирующей способностью и большой глубиной проникновения.

Воздействие ионизирующих излучений на организм человека.

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являют­ся процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют сво­бодные радикалы Н + и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70% воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами бел­ка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме.

Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химиче­ские соединения, не свойственные организму (токсины). Нарушаются функции кроветворных органов (красного костного мозга), увеличи­вается проницаемость и хрупкость сосудов, происходит расстройство

желудочно-кишечного тракта, ослабевает иммунная система человека, происходит его истощение, перерождение нормальных клеток в зло­качественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изме­нения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Для защиты от ионизирующих излучений применяют следующие методы и средства :

· снижение активности (количества) радиоизотопа, с которым работает человек;

· увеличение расстояния от источника излучения;

· экранирование излучения с помощью экранов и биологиче­ских защит;

· применение средств индивидуальной защиты.

В инженерной практике для выбора типа и материала экрана, его толщины используют уже известные расчетно-экспериментальные данные по кратности ослабления излучений различных радионукли­дов и энергий, представленные в виде таблиц или графических зави­симостей. Выбор материала защитного экрана определяется видом и энергией излучения.

Для защиты от альфа-излучения достаточно 10 см слоя воздуха. При близком расположении от альфа-источника применяют экраны из органического стекла.

Для защиты от бета-излучения рекомендуется использовать материалы с малой атомной массой (алюминий, плексиглас, карболит). Для комплексной защиты от бета- и тормозного гамма-излучения применяют комбинированные двух- и многослойные экраны, у кото­рых со стороны источника излучения устанавливают экран из мате­риала с малой атомной массой, а за ним - с большой атомной массой (свинец, сталь и т.д.).

Для защиты от гамма- и рентгеновского излучения, обладаю­щих очень высокой проникающей способностью, применяют материа­лы с большой атомной массой и плотностью (свинец, вольфрам и др.), а также сталь, железо, бетон, чугун, кирпич. Однако чем меньше атомная масса вещества экрана и чем меньше плотность защитного материала, тем для требуемой кратности ослабления требуется боль­шая толщина экрана.

Для защиты от нейтронного излучения применяют водородо-содержащие вещества: воду, парафин, полиэтилен. Кроме того, нейт­ронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из раз­личных материалов: свинец-полиэтилен, сталь-вода и водные рас­творы гидроокисей тяжелых металлов.

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организ­ма с вдыхаемым воздухом применяют респираторы (для защиты от ра­диоактивной пыли), противогазы (для защиты от радиоактивных газов).

При работе с радиоактивными изотопами применяют халаты, комбинезоны, полукомбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки. При опасности значи-тельного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брю­ки, фартук, халат, костюм), покрывающую все тело или места воз­можного наибольшего загрязнения. В качестве материалов для пле­ночной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При ис­пользовании пленочной одежды в ее конструкции предусматривается принудительная подача воздуха под костюм и нарукавники.

При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины.

При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной пода­чей чистого воздуха под костюм. Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец. При работе с альфа- и бета-препаратами для защиты лица и глаз используют защитные щитки из оргстекла.

На ноги надевают пленочные туфли или бахилы и чехлы, сни­маемые при выходе из загрязненной зоны.

В современном производстве распространены различные виды излучений: ультрафиолетовое, электромагнитное, инфракрасное и радиоактивное. Инфракрасное излучение имеет место в горячих цехах, источниками ультрафиолетовых излучений является дуга электросварки, ртутно-кварцевые лампы и другие ультрафиолетовые и облучающие установки, солнце, лазеры. Источники электромагнитных излучений - линии электропередач, различные высокочастотные генераторы, радиоволны. При обработке материалов (пайка, резка, точечная сварка, сверление отверстий в сверхтвердых материалах, дефектоскопия и др.) применяют лазеры, являющиеся источниками лазерных излучений. Классификация средств защиты.

По характеру применения различают средства коллективной и индивидуальной защиты работающих.Средства коллективной защиты в зависимости от назначения подразделяют на классы: средства защиты от ионизирующих, инфракрасных, ультрафиолетовых, электромагнитных излучений и излучений оптических, квантовых генераторов, от магнитных и электромагнитных полей. Из средств индивидуальной защиты представляют интерес изолирующие костюмы, средства защиты органов дыхания (типа масок), глаз, лица, рук, головы, специальная обувь и одежда.2.

Ультрафиолетовое излучение при длительном воздействии больших доз УФИ могут наступить серьезные поражения глаз и кожи. В частности, это может привести к развитию рака кожи, кератитов (воспалений роговицы) и помутнению хрусталика глаз. максимальная облученность ограничивается 7,5 мэр-ч/м2, а максимальная суточная доза - 60 мэр-ч/м2 для УФИ с длиной волны больше 280 нм. 3. Инфракрасное излучение Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Группа А - излучение с длиной волны от 0,76 до 1,4 мкм, В - от 1,4 до 3,0 мкм и С - свыше 3,0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. 4.

Биологическое воздействие ионизирующего излучения проявляется в виде первичных физико-химических процессов, возникающих в молекулах живых клеток и окружающего их субстрата, и в виде нарушения функций целого организма как следствия первичных процессов. 5. Зашита от электромагнитных полей (излучений). Различают электромагнитное поле естественного(воздействию ЭМП Земли, солнца и других планет.) и антропогенного характера(линии электропередач (ЛЭП), открытые распределительные устройства, антенны теле и радиопередач, радиотехнические и электронные устройства,).



1) Средства и методы защиты от ЭМП (электромагнитное поле):

Организационные мероприятия: предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного типа.

Инженерно-техническая защита: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения.

В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.

Лечебно-профилактические мероприятия: выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ - 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона - 1 раз в 24 месяца.

2) Средства и методы защиты от электрического поля частотой 50 гц:

Стационарные экранирующие устройства (козырьки, навесы, перегородки);

Переносные (передвижные) экранизирующие устройства (инвентарные навесы, палатки, перегородки, щиты, зонты, экраны и т.д.);

Индивидуальные средства защиты: защитный костюм-куртка и брюки, комбинезон, экранизирующий головной убор; специальная обувь с токопроводящей резиновой подошвой.

3) Средства и методы защиты от статического электричества:

заземление оборудования; для человека - антиэлектростатическая обувь с электропроводящей подошвой, спецодежда; для автомашин - антистатик.

4) Средства и методы защиты от лазерного излучения:

специальные очки, щитки, маски, снижающие облучение глаз до уровня предельно допустимого облучения. Работающим с лазерами необходимы предварительные и периодические (1 раз в год) медицинские осмотры терапевта, окулиста, невропатолога.



5) Средства и методы защиты от ультрафиолетового излучения:

В целях профилактики отравлений окислами азота и озоном соответствующие помещения должны быть оборудованы местной или общеобменной вентиляцией, а при сварочных работах в замкнутом пространстве необходимо подавать свежий воздух прямо под щиток или шлем.

Защитные меры включают средства отражения УФ-излучений, защитные экраны и средства индивидуальной защиты кожи и глаз.

Уровень мощности экспозиционной дозы рентгеновского излучения не должен превышать 7,74 1012 А/кг (ампер на килограмм), что соответствует эквивалентной дозе, равной 0,1 мбэр/ч (100 мкР/ч; 0,03 мкР/с).

Интенсивность инфракрасного (ИК) и видимого излучения от экрана видеомонитора не должна превышать 0,1 Вт/м2 в видимом (400-760 нм) диапазоне, 0,05 Вт/м2 в ближнем ИК-диапазоне (760-1050 нм), 4 Вт/м2 в дальнем (свыше 1050 нм) ИК-диапазоне.

Ряд производственных процессов в черной металлургии сопровождается воздействием на работающих инфракрасного, видимого, ультрафиолетового и ионизирующего излучений.

Видимое излучение

Чрезмерная яркость производственных источников видимого излучения при обслуживании сталеплавильных агрегатов и нагревательных устройств в прокатных цехах, а также при выполнении сварочных работ вызывает явление временной слепимости и отрицательно влияет на светочувствительные элементы сетчатки глаз человека.

Для предупреждения слепимости работающих надо устранять источники чрезмерной яркости, заменяя, например, открытую электросварку сваркой под слоем флюса, а при невозможности устранения источников яркости - применять очки с цветными стеклами (светофильтрами).

Ультрафиолетовое излучение

Невидимые ультрафиолетовые лучи появляются в источниках излучения с температурой выше 1500 °С и достигают значительной интенсивности при температуре более 2000 °С. В металлургии ультрафиолетовое излучение вызывается такими процессами, как плавление стали в дуговых электропечах, в мартеновских печах и конвертерах с применением кислорода и при сварочных работах. Ультрафиолетовое излучение отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Длительное воздействие ультрафиолетовых лучей вызывает также кожные заболевания и отрицательно влияет на центральную нервную систему человека.

Для защиты от ультрафиолетового излучения применяется экранирование источников излучения, а также спецодежда для работающих и светофильтры (очки, шлемы) из темно-зеленого стекла для защиты глаз.

В небольших дозах ультрафиолетовое излучение оказывает положительное действие, увеличивая работоспособность человека и повышая сопротивляемость организма инфекции.

Рентгеновское излучение

Рентгеновскому излучению в черной металлургии подвергается персонал, обслуживающий рентгеновские установки, применяемые для исследований и дефектоскопии металла. Отрицательное воздействие рентгеновского излучения выражается в ухудшении самочувствия человека (слабость, головные боли, рвоты и т. п.), в изменении нормального состава крови, в повреждении зрения и поражении кожи вплоть до возникновения рака кожи.

Для защиты работающих от рентгеновского излучения необходимо уменьшать рассеивание рентгеновских лучей и защищать людей экранами, задерживающими излучение (свинец, свинцовые стекла для защиты глаз). Кроме того, для рентгенологов сокращается рабочий день (до 4 ч) и увеличивается продолжительность отпуска (до 6 недель).

Радиоактивные вещества

В металлургии применяются радиоактивные изотопы для контроля за технологическими процессами выплавки чугуна и стали и контроля за износом огнеупорных материалов. Облучение ионизирующими излучениями и попадание в организм радиокативных веществ представляет большую опасность для здоровья и жизни -работающих.

Радиоактивный распад сопровождается выделением альфа- и бета-частиц и гамма-излучением. За единицу дозы рентгеновского или гамма-излучения принят рентген (р). Один рентген соответствует поглощению воздухом 7,07 - 1010 эв/см3. Электрон-вольт (эв)-энергия, которую приобретает электрон при прохождении разности потенциалов в один вольт (1 эв=1,6027 10 -19 Дж).

При разовой дозе облучения всего организма в 100-200 р возникает заболевание человека лучевой болезнью в легкой форме. Облучение в 200-400 р приводит к средней степени лучевой болезни, потере трудоспособности; а доза облучения более 400 р вызывает тяжелую степень лучевой болезни, нередко приводящую к смерти. Доза облучения в 600 р является смертельной. Вообще степень заболевания зависит от размеров облученной поверхности тела. Так, например, если дозой в 600 р будет облучаться участок кожи в несколько квадратных сантиметров, то это не вызовет лучевой болезни. Облучение более 30% поверхности тела приведет к тяжелым заболеваниям.

При лучевой болезни резко изменяется состав крови (уменьшается в несколько раз число белых кровяных шариков с одновременным уменьшением и красных кровяных шариков).

Для предупреждения лучевой болезни при работе с радиоактивными веществами работающие не должны подвергаться облучению более предельно допустимой дозы (ПДД). Эта доза по действующим санитарным нормам (1960 г.) равна 0,1 рентгена в неделю. Если облучению подвергаются только кисти рук, то ПДД допускается увеличить в несколько раз (в некоторых случаях до 10 раз).

Для защиты от ионизирующих излучений применяются следующие методы:

  • защита расстоянием (увеличивая расстояние от источника излучения);
  • защита временем (уменьшая время пребывания в зоне облучения);
  • защита экранированием источников излучения.

Защита от альфа-частиц достигается применением резиновых перчаток и спецодежды. Открытые части тела, удаленные на расстояние более 10 см от источника излучения, не подвергаются вредному воздействию альфа-частиц.

Защита от бета-частиц, разрушительно воздействующих на слизистые оболочки и на роговицу глаз, достигается применением специальных захватов, щипцов, защитных экранов, а также предохранительных очков.

От гамма-лучей требуется применять более надежную защиту в связи с их большой проникающей способностью. Основным средством защиты является экранирование источников излучения. В качестве средств индивидуальной защиты применяется спецодежда, резиновые перчатки, спецбелье и спецобувь. Если возникает опасность попадания радиоактивных веществ на кожу или в органы дыхания (радиоактивные жидкости, порошки и т. п.), то используются дополнительные средства защиты (полихлорвиниловая спецодежда, резиновая обувь, пневмокостюмы, респираторы разового пользования ШБ-1 «Лепесток» для защиты от радиоактивных аэрозолей).

Работы с радиоактивными веществами производятся в специальных камерах, оборудованных манипуляторами. Для хранения и транспортировки твердых и жидких радиоактивных отходов применяются специальные герметичные контейнеры.

Лабораторные помещения требуется обеспечить надежно действующей приточно-вытяжной вентиляцией. Периодически должна производиться уборка и дезактивация лабораторий. При применении радиоактивных веществ важно обеспечить постоянный дозиметрический контроль, который осуществляется при помощи специальных дозиметров (рисунок 1).

Карманный дозиметр:
1 - янтарная втулка электростатической машинки;
2 - янтарная втулка;
3 - пробковый цилиндр;
4 - корпус;
5 - ионизационная камера;
6 - линзы;
7 - металлическая скоба;
8-контактная пластинка;
9-кнопка

При расчетном определении безопасных условий работы с радиоактивными веществами пользуются следующими формулами:

Из приведенных формул видно, что доза облучения прямо пропорциональна активности источника, времени облучения и обратно пропорциональна квадрату расстояния от него.

Учитывая большую опасность радиоактивных веществ, их применение можно допускать только в необходимых случаях.

Мероприятия по защите от электромагнитных полей, создаваемых установками высокой частоты

В металлургии токи высокой частоты применяются, например, для плавления металла в индукционных электропечах, для нагревания концов рельсов при их термообработке и других целей.

Как известно, в металле, внесенном в переменное магнитное поле, возникают вихревые токи, вызывающие нагревание металла. Образовавшееся электромагнитное поле распространяется в окружающем пространстве со скоростью, приближающейся к скорости света.

Электромагнитное поле частично поглощается тканями организма, что отрицательно влияет на состояние здоровья человека. Особенно отрицательно электромагнитное поле воздействует на центральную нервную систему и на глаза работающих, находящихся вблизи от действующих высокочастотных установок.

Предельно допустимая величина интенсивности облучения энергией сверхвысоких частот в рабочей зоне за полный рабочий день не должна превышать 0,01 мвт/см 2 соответственно при облучении до 2 ч - 0,1 мвт/см 2 и при облучении до 15-20 мин - не более 1 мвт/см 2 Работающие должны обязательно надевать защитные очки.

Основным мероприятием техники безопасности при обслуживании установок высокой частоты является их экранирование. Экраны должны выполняться из тонколистового (толщиной не менее 0,5 мм) металла с большой электропроводностью. Защитные экраны должны быть тщательно заземлены.

Для достижения надежной защиты обслуживающего персонала экраны следует устраивать в виде ряда ступеней (экранировать первичные и рабочие контуры агрегатов и, кроме того, дополнительно защищать экраном всю установку).

Наряду с экранированием следует ограничивать время пребывания работающих вблизи установок и необходимо размещать приборы управления на значительном расстоянии от установок.

Высокочастотные установки необходимо оборудовать световой сигнализацией, указывающей о готовности установки к включению (зеленая лампа) и извещающей о включении установки (красная лампа).

Рабочие инструменты для загрузки или перемешивания жидкого металла необходимо снабжать рукоятками, покрытыми электроизоляцией. Работающие обязаны пользоваться специальными предохранительными очками.

Контроль за напряженностью электромагнитных полей в рабочей зоне обслуживания установок следует периодически осуществлять специальными приборами (ИНП-ЛИОТ).

В целях электробезопасности при эксплуатации установок высокой частоты необходимо строго соблюдать правила техники безопасности при обслуживании промышленных электроустановок.

Излучения в конвертерном цехе

Вредные производственные факторы в конвертерном цехе

Микроклимат рабочих помещений конвертерного цеха характеризуется обычными для горячих цехов вредными производственными факторами - значительными выделениями избыточного тепла, пыли и газов, резко контрастным освещением. Они неблагоприятно действуют на организм человека, снижают его работоспособность, приводят к профессиональным заболеваниям.

Наиболее отличительная особенность физической среды - непрерывное поступление явного тепла. Первичными его источниками в цехе являются жидкий металл, шлак и высоконагретые газы. Они дают главным образом инфракрасное излучение (тепловые лучи), которые нагревают окружающие поверхности. Горячие кожухи конвертеров, миксеров, чугуновозных и сталеразливочных ковшей, шлаковых чаш, нагретые стенки изложниц, поддоны, горячий скрап, шлаковые корки, бой огнеупоров служат вторичными источниками тепла. От них нагревается воздух помещения. Для инфракрасных лучей сухой воздух прозрачен. Перемещение более нагретых масс воздуха к менее нагретым создает конвективный перенос тепла (конвекция - циркуляция потоков воздуха, вызванная разностью их температур).

Вид теплоизлучения определяется температурой поверхности физического тела. Нагретые до 600°С поверхности дают интенсивное инфракрасное излучение. При 700-750°С появляется видимое излучение. При температуре расплавленного железа (1500°С и выше) вместе с инфракрасным и видимым в спектре наблюдается и ультрафиолетовое излучение - из горловины конвертера с металлом, от струи чугуна из миксера, металла и шлака при выпуске плавки из конвертера. Вблизи первичных источников значительное количество тепла выделяется, кроме того, и конвекцией. По санитарным нормам к горячим относятся те производства, где интенсивность тепловыделения в воздух превышает 84 кДж/(м 3 ·ч). В конвертерном цехе тепла выделяется во много раз больше. Например, в стрипперном отделении, где раздевают горячие слитки с температурой поверхности 900-930°С, интенсивность тепловыделений доходит до 800-1000 кДж/(м 3 ·ч).

Воздействие лучистой энергий на человека оценивается интенсивностью инфракрасного облучения. Оптимальный уровень нагрева принимается 1,25 МДж/(м 3 ·ч). Облучение такой интенсивности человек переносит легко. Более сильное тепловыделение ухудшает микроклимат участка и неблагоприятно воздействует на работающих: повышается импульсивность кожного анализатора, усиливается напряженность терморегуляции организма под контролем центральной нервной системы, сердечно-сосудистая и дыхательная системы мобилизуются к более высоким нагрузкам. Возникают дискомфортные теплоощущения. Работоспособность в таких условиях падает.

Рабочие горячих профессий подвергаются весьма интенсивному облучению, достигающему 38-50 МДж/(м 2 ·ч). Задача снижения избыточного тепла в производственных помещениях решается комплексно, посредством ряда технических и санитарно-гигиенических мер: уменьшением инфракрасного излучения первичными источниками; вентиляцией помещений; применением защитных экранов, теплоизоляции, тепловоздушных завес; созданием физических условий, способствующих облегчению терморегуляции организма и снятию перегрева тела. Например, футеровка конвертера и миксера служит также теплоизоляцией и герметизацией рабочего пространства агрегата. Теплонесущие устройства над конвертером охлаждаются водой, циркулирующей под напором в полых объемах конструкций. В нижнюю подъемную часть газохода вода подается при температуре 20°С и отводится нагретой до 45-50°С в бассейн-отстойник. На охлаждение подъемной и экранированной частей газохода расходуется 1500-2000 м 3 /ч при 0,3-0,4 МПа, а кислородной фурмы 120 м 3 /ч при 1,2- 1,4 МПа.

Проем горловины при повалке конвертера заслоняют (экранируют) футерованным щитом с прорезью для прохода ложки с пробой и термопары. Рабочие помещения, кабинеты, площадки, переходные мостики защищают от перегрева, применяя теплоизоляционную обшивку стен и полов.

Защита от тепловых воздействий в конвертерном цехе

Для того чтобы защитить в конвертерном цехе людей от тепловых воздействий, удаляют рабочие места из зон интенсивного инфракрасного излучения и конвективного тепла, сооружают технические устройства для уменьшения теплорадиации и используют средства индивидуальной защиты работающих. В этом направлении совершенствуется и технология. Освоена, например, бесстопорная разливка стали с шиберными затворами.

Отдалить человека от зоны облучения позволяет механизация и автоматизация производственных процессов, создание дистанционного управления агрегатами, применение телевидения для наблюдения за ходом работ. В частности, из опасной зоны выведены пульты управления конвертером (дистрибуторная) и сталевозной тележкой, экспресс-лаборатория. Вблизи теплоисточника защитное действие оказывает экранирование.

Широко применяются установки искусственного микроклимата - кондиционеры, которые монтируют в дистрибуторных, диспетчерских, конторских и других рабочих помещениях, в кабинах машинистов электрических кранов, в комнатах кратковременного отдыха.

Рабочих конвертерного цеха обеспечивают специальными одеждой, обувью и другими средствами индивидуальной защиты. Спецодежда защищает человека от
лучистого и конвективного тепла, брызг металла и шлака, пыли и загрязняющих веществ. Сталевары, миксеровые, разливщики, огнеупорщики (каменщики) получают суконные костюмы и кожаные ботинки (ГОСТ 12.4.045-78; 12.4.032-77).

Костюмы шьют из грубошерстного, плотного и теплоизолирующего сукна, которое предохраняет тело от термических ожогов и механических поражений осколками.

Тонкий слой воздуха, удерживаемый грубым ворсом, защищает от теплооблучения.

К средствам теплозащиты относятся также каски (текстолитовые или фибровые) с подстилающим вкладышем из шерстяной ткани - подшлемником; наголовные щитки и маски из прочного органического стекла, мелкоячеистой металлической сетки (3-4 мм); очкисветофильтры из синего стекла (ГО СТ 12.4.013-75); очки с металлизированными стеклами и боковыми сегментами.

Большое значение для улучшения условий труда имеет рациональная организация работы в цехе - своевременный вывоз из главного здания составов с залитыми слитками, заполненных шлаковозов, железнодорожных платформ, груженных горячим скрапом, шлаком, боем кирпича.

Терморегуляция (теплооблучение) организма в конвертерном цехе

Терморегуляция - физиологический механизм приспособления организма к тепловым изменениям в микросреде путем теплообмена для поддержания постоянной температуры тела в пределах 36-37°С. Теплопоглощение и теплоотдача при этом уравниваются.

Источником теплооблучения человека служат, как указывалось, инфракрасное излучение и нагретый воздух. Тепло в организме образуется вследствие обмена веществ. Отдача тепла происходит главным образом через кожу излучением, конвекцией и испарением пота. Температура поверхности кожи составляет 33-34°С.

Интенсивность теплоотдачи тела излучением определяемся разностью температур кожи и окружающих предметов, а конвекцией - разностью температур кожи й окружающего воздуха.

Физическое состояние микросреды характеризуют метеорологические факторы - температура, относительная влажность и скорость движения воздуха. Согласно санитарным нормам проектирования промышленных предприятий (СН 245-71) и ГО СТ 12.1.005-76 в горячих цехах на постоянных рабочих местах и работах средней тяжести в холодный и переходный периоды года при температуре наружного воздуха ниже + 10°С оптимальными считаются: температура воздуха + 1 7 - 19°С, относительная влажность - 60-30%, скорость движения воздуха - не более 0,3 м/с; допустимыми - соответственно 16-22°С; до 75% и не более 0,5 м/с.

В теплый период года при температуре наружного воздуха более +10°С оптимальные значения ее, относительной влажности и скорости движения воздуха составляют соответственно 20-23°С (допустимая не более чем па 5°С выше средней температуры наружного воздуха в 13 ч самого жаркого месяца, но не более 28°С), 60-30% (при 28°С - не более 55%, при 27°С - 60%, при 26°С - 65%, при 25°С - 70%, при 24°С и ниже - не более 75%) и 0,2-0,5 м/с (допустимая 0,5- 1,0 м/с). Кроме того, указываются предельно допустимые концентрации (ПДК) вредных веществ. Они предусматривают в воздухе рабочей зоны и в зоне дыхания такие концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч или другой продолжительности, но не более 41ч в неделю на протяжении всего трудового стажа не могут вызвать заболеваний или отклонений здоровья.

Оптимальные микроклиматические условия вызывают у человека ощущение теплового комфорта, не требуют напряжения терморегуляции организма. Работоспособность людей сохраняется в течение всей смены.

Рабочей зоной считается пространство высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного или временного пребывания людей.

Зоной дыхания - пространство в радиусе до 50 см от лица.

В конвертерном цехе в местах, где температура воздуха превышает 30°С, фактор перепада температур кожи и среды теряет свое регулирующее значение. Терморегуляция организма происходит в основном путем испарения пота, что существенно повышает нагрузки на сердечно-сосудистую и дыхательную системы. В таких условиях человек выделяет за смену 5 - 6 л и больше влаги. Возникает ощущение дискомфорта - самочувствие ухудшается. Наступает скорое утомление.

Для улучшения условий труда применяют санитарно-гигиенические меры: воздушный и водовоздушный душ, гидропроцедуры, радиационное охлаждение, рациональный питьевой режим. Воздушный душ (стационарный или передвижной) ускоряет подвижность воздуха на участке, что усиливает теплоотдачу организма конвекцией. В жаркое время воздух увлажняют, распыляя струю воды форсунками. При испарении капель воды, попавших на одежду и открытые части тела, охлаждается кожа. Зимой приточный воздух душа предварительно подогревают в калорифере.

Водовоздушный душ нецелесообразно применять в чрезмерно запыленных помещениях. Там он не столько ослабляет теплооблучение, сколько разносит пыль по цеху.

Гидропроцедуры - водяной душ или полудуш, устраиваемые вблизи рабочего места,- освежают человека, снимая перегрев тела. В помещениях пульта управления, в конторке мастера, в комнате кратковременного отдыха монтируют настенные панели или разводку труб (регистры), через которые пропускают холодную воду. Это радиационное охлаждение - эффективное средство улучшения условий труда в горячем цехе.

Рациональный питьевой режим рассчитан на сохранение оптимального водно-солевого баланса организма, что особенно важно в жаркое время, когда терморегуляция протекает главным образом за счет потовыделения. Обезвоживание организма приводит к повышению вязкости крови и ухудшает кровообращение, замедляет снабжение тканей кислородом, повышает температуру кожи,вызывает мышечную слабость, головокружение и может завершиться тепловым ударом.

Для восполнения потери организмом солей с потом (большей частью - хлоридов) питьевую воду подсаливают (до 3-5 г поваренной соли на литр воды). Летом ее охлаждают до 14- 16°С и газируют углекислотой для придания приятного вкуса. Употребляют для питья и пресную охлажденную воду. Хорошо утоляет жажду белково-витаминный тонизирующий напиток, имеющий вкус хлебного кваса. Полезен и горячий чай.

ИЗЛУЧЕНИЯ В ПРОИЗВОДСТВЕ И ЗАЩИТА ОТ НИХ

1. Источники излучения и классификация средств защиты

Источники излучений. В современном производстве распространены различные виды излучений: ультрафиолетовое, электромагнитное, инфракрасное и радиоактивное.

В практике животноводства и птицеводства широко применяют облучение животных в период стойлового содержания ультрафиолетовыми, а молодняка (ягнят, цыплят, телят, поросят) инфракрасными лучами. Используются излучения для пастеризации молока, для ускорения развития растений, для уменьшения восприимчивости к болезням и в других случаях.

Под влиянием умеренного ультрафиолетового облучения повышается естественная резистентность организма и продуктивность животных. Инфракрасные лучи в отличие от ультрафиолетовых не обладают заметным химическим действием; они поглощаются тканями, вследствие чего оказывают в основном тепловые воздействия. На этом основано применение инфракрасных лучей для обогрева молодняка в зимнее время. Поглощение инфракрасных лучей кожным покровом - сложный биологический процесс, в котором участвует весь организм с его терморегуляторным аппаратом. Действие инфракрасных лучей вызывает переполнение кровеносных сосудов кровью (в результате нагрева кожи), что усиливает обмен веществ.

Инфракрасное излучение имеет место в горячих цехах, источниками ультрафиолетовых излучений является дуга электросварки, ртутно-кварцевые лампы и другие ультрафиолетовые и облучающие установки, солнце, лазеры.

Источники электромагнитных излучений - линии электропередач, различные высокочастотные генераторы, радиоволны.

Для облучения семян, растений, пищевых продуктов, для оценки эффективности удобрений, роли микроэлементов, плодородия почвы, качества ремонта и износостойкости деталей, для исследования механизма воздействия регуляторов роста и обмена веществ у животных используют искусственные радиоактивные вещества.

При обработке материалов (пайка, резка, точечная сварка, сверление отверстий в сверхтвердых материалах, дефектоскопия и др.) применяют лазеры, являющиеся источниками лазерных излучений.

Все перечисленные излучения при превышении определенных значений вредны, поэтому необходимо предусматривать соответствующие меры безопасности.

Классификация средств защиты. По характеру применения различают средства коллективной и индивидуальной защиты работающих (ГОСТ 12.4.011-87).

Средства коллективной защиты в зависимости от назначения подразделяют на классы (для защиты от излучений): средства защиты от ионизирующих, инфракрасных, ультрафиолетовых, электромагнитных излучений и излучений оптических, квантовых генераторов, от магнитных и электромагнитных полей.

Из средств индивидуальной защиты представляют интерес изолирующие костюмы, средства защиты органов дыхания (типа масок), глаз, лица, рук, головы, специальная обувь и одежда.

2. Ультрафиолетовое излучение

Общие сведения. Электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн в диапазоне 200...400 нм, называют ультрафиолетовым излучением (УФИ). Влияние его на человека оценивают эритемным действием (покраснение кожи, приводящее через 48 ч к ее пигментации - загару). Мощность УФИ для биологических целей характеризуется эритемным потоком, единицей измерения которого является эр (эритемный поток, соответствующий излучению с длиной волны 297 нм и мощностью 1 Вт). Эритемную освещенность (облученность) выражают в эр/м 2 , а эритемную дозу (экспозицию) - в эр-ч/м 2 .

При длительном отсутствии УФИ в организме развиваются неблагоприятные явления, называемые «световым голоданием». Поэтому УФИ необходимо для нормальной жизнедеятельности человека. Однако при длительном воздействии больших доз УФИ могут наступить серьезные поражения глаз и кожи. В частности, это может привести к развитию рака кожи, кератитов (воспалений роговицы) и помутнению хрусталика глаз (фотокератита, который характеризуется скрытым периодом от 0,5 до 24 ч).

Для профилактики неблагоприятных последствий, вызванных дефицитом УФИ, используют солнечное излучение, устраивая солярии, инсоляцию помещений, а также применяя искусственные источники УФИ (в соответствии с Рекомендациями по профилактике ультрафиолетовой недостаточности). Рекомендуются дозы УФИ в пределах 0,125...0,75 эритемной дозы (10...60 мэр-ч/м 2). В соответствии с Указаниями по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях максимальная облученность ограничивается 7,5 мэр-ч/м 2 , а максимальная суточная доза - 60 мэр-ч/м 2 для УФИ с длиной волны больше 280 нм.

Меры защиты . К средствам коллективной защиты от УФИ относятся различные устройства (оградительные, вентиляционные, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности.

Защиту от УФИ осуществляют различными экранами: физическими (в виде различных предметов, поглощающих, рассеивающих или отражающих лучи) и химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ). Для защиты используют изготовленную из тканей (поплина и др.) специальную одежду, а также очки с защитными стеклами. Полную защиту от УФИ всех волн обеспечивает флинтглас (стекло, содержащее окись свинца) толщиной 2 мм. При устройстве помещений учитывают, что отражающая способность различных отделочных материалов для УФИ и видимого света различна. Краски на масляной основе, оксиды титана и цинка плохо отражают УФИ, а меловая побелка, полированный алюминий - хорошо.

3. Инфракрасное излучение

По физической природе инфракрасное излучение (ИФИ) представляет собой поток частичек материи, которые имеют волновые и квантовые свойства. ИФИ охватывает участок спектра с длиной волны от 760 нм до 540 мкм. Относительно человека источником излучения является всякое тело с температурой свыше 36-37°С, и чем больше разность, тем большая интенсивность облучения.

Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Эффект действия инфракрасных излучений зависит от длины волны, которая обуславливает глубину их проникновения. В связи с этим инфракрасное излучение делится на три группы (согласно классификации Международной комиссии по освещению): А, В и С.

Допустимая продолжительность действия на человека тепловой радиации

Группа А - излучение с длиной волны от 0,76 до 1,4 мкм, В - от 1,4 до 3,0 мкм и С - свыше 3,0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. Длинноволновое инфракрасное излучение больше поглощается в эпидермисе, а видимые и более близкие инфракрасные излучения в основном поглощаются кровью в пластах дермы и подкожной жировой клетчатки.

Пропуск, поглощение и рассеяние лучистой энергии зависят как от длины волны, так и от тканей организма. Влияние инфракрасных излучений при поглощении их в разных пластах кожи приводит к нагреванию ее, что обуславливает переполнение кровеносных сосудов кровью и усиление обмена веществ.

Длинноволновые инфракрасные излучения поглощаются слезой и поверхностью роговицы и вызывают тепловое действие. Таким образом, инфракрасные излучения, действуя на глаз, могут вызвать ряд патологических изменений.

К наиболее тяжелым повреждениям приводит коротковолновое инфракрасное излучение. При интенсивном действии этих излучений на незащищенную голову может произойти так называемый солнечный удар.

Тепловой эффект действия излучения зависит от многих факторов: спектру, продолжительности и прерывистости излучения, интенсивности потока, угла падения лучей, величины поверхности, которая излучает, размеров участка организма, одежды и др.

Интенсивность инфракрасного излучения необходимо измерять на рабочих местах или в рабочей зоне близ источника излучения (табл.).

На непостоянных рабочих местах при стабильных источниках целесообразно замерять интенсивность излучения на разных расстояниях от источника излучения с одинаковыми интервалами и определять продолжительность облучения рабочих. Поскольку инфракрасное излучение нагревает окружающие поверхности, создавая вторичные источники, которые выделяют тепло, то необходимо измерять интенсивность излучение не только на постоянных рабочих местах или в рабочей зоне, но и в нейтральных точках и других местах помещения. Суммарная допустимая интенсивность излучение не должна превышать 350 Вт/м 2 .

Интенсивность суммарного теплового излучения измеряется актинометрами, а спектральная интенсивность излучения - инфракрасными спектрометрами ИКС-10; ИКС-12; ПКС-14.

Для измерения малых величин (1400-2100 Вт/м 2) интенсивности излучения (от слабо нагретых тел или от сильных источников, размещенных далеко от рабочей зоны) применяют серебряно-висмутовый термостолбик Молля.

Для измерения ИФИ используют неселективные приемники излучения: пиранометр Янишевского, болометры и термоэлементы с оптическим фильтром КС-19, а также приборы, предназначенные для измерения ИФИ.

Оборудование ТФА-2 предназначенное для автоматической регистрации инфракрасного облучения и количества инфракрасного облучения в диапазоне длины волн от 700 до 3000 нм. Граница регистрации количества излучения 500 Вт мин/м 2 . Приведенная погрешность регистрации ±5 %. Питание от сети.

Фотощуп ИВФ-1 предназначенный для измерения облучения в видимой (360-760 нм) и инфракрасной (760-2500 нм) участках спектру.

Граница измерения 100 Вт/м 2 с двумя потдиапазонами. С помощью нейтрального фильтра граница измерений может быть повышена в 5 раз. Приведенная погрешность измерений ±5 %. Питание от сети.

Прибор для измерения ИФИ, созданного искусственными источниками излучения, предназначенный для работы в условиях сельскохозяйственного производства. Спектральная чувствительность прибора в пределах от 620 до 10* нм. Приемником излучения является термобатарея РК-15, граница измерений прибора 1000 Вт/м 2 с тремя поддиапазонами. Приведенная погрешность измерения ±10 %. Питание автономное.