Крупнейшие радиационные аварии и катастрофы в мире. Справка

относит непредвиденный случай, обусловленный нарушением технологического процесса, неисправностью оборудования и другими причинами, который создает повышенную радиационную опасность для персонала и населœения.

Наиболее серьезными источниками радиационных аварий являются предприятия, вырабатывающие или использующие атомную энергию. К ним относятся исследовательские реакторы, производства искусственных изотопов, атомные электростанции (АЭС) и станции теплоснабжения (ACT), атомные теплоэлектроцентрали (АТЭЦ), а также предприятия металлургии химической промышленности и т.д.

Получение электрической или тепловой энергии является главной областью мирного применения ядерных технологий. В основу такого производства положен так называемый ядерный топливный цикл (ЯТЦ).

Являясь наиболее мощными и сложными, технические системы атомных энергетических производств являются основным источником серьезных радиационных аварий. По данным Международного агентства по атомной энергетике (МАГАТЭ) только в период с 1971 no 1985 ᴦ.ᴦ. в 14 странах мира на АЭС имели место более 150 аварий различной тяжести, ᴛ.ᴇ. в среднем около 10 в год. Основными причинами аварий на АЭС являются:

Ошибки в проектах, дефекты - на их долю приходится 30,7% всœех аварий;

Износ оборудования, коррозионные процессы - 25,5%;

Ошибки оператора- 17,5%;

Ошибки в эксплуатации - 14,7%;

Прочие причины - 11,6%.

Наиболее серьезной аварией, быстро переросшей в глобальную катастрофу, стала авария на Чернобыльской АЭС (Украина, СССР) 26 апреля 1986ᴦ. В результате последовательных ошибок, допущенных операторами ядерного реактора, в нем начал накап­ливаться водяной пар.
Размещено на реф.рф
Он реагировал с находящимся в реакторе горячим цирконием, и образовывался водород. Давление водо­рода в активной зоне реактора нарастало, что привело в конеч­ном итоге к разрушению верхней части реактора, четвертого блока станции, часть здания и кровля машинного зала АЭС. При соприкос­новении с воздухом газообразная смесь взорвалась, и от возник­шего пламени загорелся графитовый замедлитель, который про­должал гореть несколько дней.

В результате взрыва и разрушения защитных и ограждающих конструкций на первой стадии произошел выброс ядерного топлива (на высоту до 1 км), а также высокоактивных обломков конструкций активной зоны, графита͵ продуктов делœения и т.п. На второй стадии (до 1 мая) мощность выброса в виде, главным образом, топливной и графитовой пыли уменьшилась. На третьей стадии (2-6 мая) наблюдалось нарастание мощности выброса, обусловленное непродуманной попыткой засыпать шахту реактора свинцом, материалами на базе бора, песком и глиной без организации теплоотвода. В результате произошел дополнительный разогрев оставшегося содержимого реактора и проплав его опорной плиты; образовавшаяся раскаленная масса проникла в подреакторные помещения. На четвертом этапе (после 6 мая) мощность выброса резко упала и в дальнейшем стабильно уменьшалась.

Радиоактивные вещества, нахо­дящиеся в реакторе, попали в атмосферу и образовали радиоак­тивное облако, размеры которого составляли 30 км в ширину и приблизительно 100 км в длину. Распространившись затем на большое расстояние, облако вызвало радиоактивное заражение местности. Зона существенного загрязнения местности (с уров­нем загрязнения более 5 мр/ч) составила около 3000 км 2 . Несколь­ко десятков человек погибло в результате аварии. Отмечены так­же многочисленные случаи заболевания лучевой болезнью. Свыше 100000 человек, проживавших в радиусе 30 км от реактора пришлось эвакуировать вскоре после аварии.

В результате аварии образовалось три радиоактивных следа на поверхности земли: северный, западный и южный и стойкое радиоактивное заражение в пределах этих следов на территориях Украины, России, Белоруссии. Повышение радиоактивности было зафиксировано в Финляндии, Норвегии и других северных странах.

Опыт Чернобыля и других аварий на АЭС и предприятиях ЯТЦ также показал, что основными источниками опасных из лучений при серьезных радиационных авариях являются: активная зона разрушенного реактора; газо-аэрозольное облако радиоактивных благородных газов и радиоактивных веществ; выброшенных из реактора; обломки активной зоны, конструкции биологической зашиты самого реактора, машин и механизмов, выброшенные из здания реактора в момент аварии; мелкодисперсные радиоактивные вещества в твердой и жидкой форме, вынесенные из реактора потоком теплого воздуха и равномерно распределœенные по поверхности земли, зданий, сооружений, насаждений и других объектов в районе аварии.

Воздействие аварий рассматриваемого типа на окружающую среду сводится помимо взрыва и локальных пожаров к радиоактивному загрязнению, осуществляемому через гидро- и воздушный перенос, диффузию в почву. Радиоактивные загрязнения имеют малую вымываемость атмосферными осадками и паводковыми водами. Торф, чернозем, суглинки и глины являются грунтами, которые особенно хорошо удерживают радиоактивные осадки. До 90% всœех осадков сосредотачивается в слое грунта толщиной до 2...3 см.

Последствия радиационных аварий для людей и ущерб, наносимый ими природе, бывают разделœены на следующие категории:

‣‣‣ немедленные смертельные случаи и травмы;

смертельные случаи, травмы и. др., возникающие среди персонала и населœения в процессе аварии (до локализации очага аварии и прекращения выброса опасных веществ);

‣‣‣ латентные (продленные) смертельные случаи и заболевания, в т.ч. будущих поколений;

‣‣‣ материальный ущерб от радиоактивного загрязнения, включая вывод земель из пользования на длительный, период, вторичный ущерб от изменения флоры и фауны;

‣‣‣ материальный ущерб от мероприятий по ликвидации по- следствий включая расходы на эвакуацию и новое размещение пострадавшего населœения, медицинское обслуживание, дезактивацию и дегазацию, ущерб от использования невосполнимых ресурсов;

‣‣‣ социальный ущерб для общества и его институтов.

Защита от радиационных аварий на предприятиях, использующих ЯТЦ, осуществляется с помощью специальных технических систем и защитных конструкций (оболочек) из желœезобетона с внутренней металлической облицовкой, заключающих внутри себя активную зону. Толщина стенок такой оболочки достигает 1,5 м. Эти оболочки обеспечивают также биологическую защиту персонала. После аварии в Чернобыле АЭС Чернобыльского типа, не обеспечивающие локализацию внутреннего аварийного воздействия, строительством запрещены.

Расчет оболочек должен обеспечить безопасность реактора при всœех гипотетически возможных видах воздействий, включая большинство особых (сейсмика, взрыв, удары и т.п., см. п.п. 3.1, 3.2, 3.4). Авария в Чернобыле выделила также в качестве особого воздействия проплав днища реакторного отделœения высокотемпературной топливной массой с последующим уходом ее в грунты с водоносными слоями. Одним из возможных путей решения этой проблемы должна быть возведение с помощью специальной техники желœезобетонных или металлических охлаждаемых ловушек, рассекающих массу и контролирующих охлаждение ее частей.

Защита людей и оборудования на радиоактивно зараженной местности достигается, главным образом, оборудованием обитаемых объектов защитными экранами из противорадиационных материалов (ПРМ). В качестве последних используются вольфрам, свинœец в виде листа и дроби, желœезо.

Защита из ПРМ должна быть общей, локальной, индивидуальной и комбинированной. Для общей защиты ПРМ размещается по всœем наружным и внутренним поверхностям помещения (обычно для группы людей). Локальная защита реализуется путем размещения ПРМ на направлениях, по которым преимущественно распространяются опасные излучения; примером должна быть пол кабины, кресло и подлокотники водителя автомашины, защищенные листами свинца. Индивидуальная защита обеспечивается ношением специальной защитной одежды. Комбинированная защита сочетает в себе всœе три способа.

Наибольшей проникающей способностью обладают, как известно, гамма- и нейтронное излучения. Поражающее действие проникающей радиации характеризуется энергией, переданной излучением единице массы вещества, или поглощенной дозой. За единицу поглощенной дозы принят 1 Грей - доза излучения, соответствующая энергии 1 Дж, переданной ионизирующим излучением любого вида облучаемому веществу массой 1 кᴦ. Внесистемной единицей поглощенной дозы является рад; 1 рад= 10 Гр.

Для защиты от нейтронного излучения предпочтительно применение водородосодержащих материалов (вода, полиэтилен и т.п.). При этом поглощение нейтронов может сопровождаться испусканием вторичного гамма-излучения; данный эффект должна быть существенно снижен введением в материал защиты бора.

Гамма-излучение хорошо ослабляется тяжелыми металлами, к примеру, свинцом.

При работе на радиоактивном следе даже при низких уровнях радиации на объектах должны функционировать системы очистки воздуха, а люди, находящиеся на открытой местности, должны использовать индивидуальные средства защиты органов дыхания.

Одна из особенностей радиоактивного загрязнения состоит по сути в том, что его невозможно обнаружить без помощи специальных дозиметрических приборов, так как радиация не имеет каких-либо внешних признаков, не обладает ни цветом, ни запахом, ни вкусом. Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых, жизненно важных процессов в организме человека. Человек в момент воздействия радиации не получает телœесных повреждений и не испытывает болевых ощущений, однако, в результате облучения у пораженного позже может развиться лучевая болезнь.

Радиационное облучение бывает внешнее и внутреннее. При внешнем облучении источник находится вне живого организма. В этом случае следует быстро покинуть зараженную зону или спрятаться в укрытии. Внешнее облучение значительно поглощается стенам здании и одеждой.

Но радиоактивные вещества могут попасть и внутрь организма - с пылью воздухом, пищей и водой. Происходит внутреннее облучение - это основная угроза для людей оказавшихся в зоне радиоактивного заражения. В организме радиоактивные вещества ведут no-разному. Одни скапливаются в костях, другие – в печени, почках.

К примеру, радиоактивный йод концентрируется в щитовидной желœезе, которая вырабатывает гормоны и регулирует жизнедеятельность организма. Обычно в организме содержится очень мало йода. Йод нужен щитовидной желœезе для нормальной работы, а накопление в ней радиоактивного йода работу желœезы нарушает. Чтобы избежать подобной опасности, для профилактики в первые часы после аварии крайне важно насытить щитовидную желœезу обычным йодом: тогда она не примет йод радиоактивный. Стоит сказать, что для насыщения обычным йодом применяются таблетки и порошки йодистого калия. Принимать его следует в течение первого времени ежедневно, по одной таблетке. В случае если таблеток нет, можно приготовить йодистую смесь: капель 5%-ного раствора йода на стакан воды. Принимать равными частями 4 раза в день.

Максимально ограничьте пребывание на открытой местности, при выходе из помещений используйте средства индивидуальной зашиты;

При нахождении на открытой территории не раздевайтесь, не садитесь на землю, не курите;

Перед входом в помещение обувь вымойте водой или оботрите тряпкой, верхнюю одежду вытряхните и почистите влажной щеткой;

Строго соблюдайте правила личной гигиены;

Принимайте пищу только в закрытых помещениях, руки тщательно мойте, рот полощите очень слабым раствором пищевой соды;

Воду употребляйте только из проверенных источников;

Исключите купание в открытых водоемах до проверки степени их радиоактивного загрязнения;

Не собирайте в лесу ягоды, грибы и цветы. Наблюдение этих рекомендаций поможет избежать заболевания лучевой болезнью.

Ошибочно полагать, что радиоактивность связана со строительством атомных электростанций и появлением ядерного оружия. Радиоактивность и постоянный её спутник - ионизирующее излучение - существовали на нашей планете с самого начала её времен - тогда, когда жизни на ней даже в помине ещё не было. Открытие же радиации как явления произошло более ста лет назад, благодаря французскому физику А.Беккерелю, впервые наблюдавшему проникающее излучение, испускаемое ураном, которое он назвал радиоактивным.

Источники ионизирующих излучений и радиоактивные вещества в настоящее время применяются практически везде, динамично развивается ядерная энергетика. Они таят в себе колоссальные возможности, в них же заключена и огромная опасность для окружающей среды и людей. Свидетельство тому - крупные радиационные аварии (взять хотя бы одну из наиболее масштабных катастроф прошлого века - аварию на Чернобыльской АЭС).

Понятие о радиационной аварии

Радиационной аварией называют аварию на радиационно опасном объекте, результатом которой является выброс в окружающую среду радиоактивных продуктов и ионизирующего излучения в количествах, превышающих допустимые нормы. Зону риска составляют следующие виды объектов:

  • Атомные электростанции и атомные энергетические установки, выполняющие производственные и исследовательские задачи;
  • Предприятия ядерно-топливного цикла;
  • Средства транспорта и космические аппараты, имеющие на своем борту радиоактивный груз или оснащенные ядерными установками;
  • Зоны хранения, нахождения или установки ядерных боеприпасов;
  • Места проведения ядерных взрывов с промышленной или испытательной целью.

Классификация

Радиационные аварии принято делить на классы, исходя из их масштабов. В зависимости от границ распространения радиоактивных веществ и возможных последствий катастрофы, выделяют аварии:

  • Локальные . Нарушается работа радиационно опасного объекта, но выброс радиоактивных веществ и ионизирующего излучение не превышает установленные для нормальной эксплуатации предприятия нормы.
  • Местные. Нарушается работа радиационно опасного объекта, выброс радиоактивных продуктов выходит за границы санитарно-защитной зоны и превышает нормальные значения, установленные для этого предприятия.
  • Общие . Нарушается работа объекта, выброс радиоактивных веществ и излучения выходит за границы санитарно-защитной зоны, превышает допустимые показатели и приводит к радиоактивному загрязнению прилегающих территорий и возможному облучению населения.

В зависимости от технических последствий, радиационные аварии подразделяются на:

  • Проектные - возможность возникновения аварии предусмотрена техническим проектом ядерной установки. Предвиденная авария, которую относительно легко устранить.
  • Запроектные - возможная авария, возникновение которой не заложено в техническом проекте.
  • Гипотетические - авария с последствиями, которые сложно предугадать.
  • Реальная - состоявшаяся авария.

Аварии с выбросом радиации также происходят либо с разрушением ядерного реактора, либо без его разрушения.

Причины радиационных аварий

Исходных причин, приводящих к авариям на радиационно опасных объектах, может быть много. Условно выделяются три ключевых группы:

  1. Отказ оборудования из-за несовершенства конструкции установки, ошибки во время его изготовления, монтажа или эксплуатации.
  2. Ошибка персонала предприятия, нарушение эксплуатационных правил.
  3. Внешние факторы (стихийные бедствия, поражение оружием, диверсионные акты и др.).

Течение радиационной аварии

Течение аварии с выбросом радиоактивных веществ включает в себя четыре фазы:

  1. Начальная фаза. Первая фаза радиационной аварии называется начальной. Быстротечная период, когда ещё не наблюдается выброс радиоактивных продуктов в окружающую среду. Может быть обнаружена возможность облучения населения, проживающего за границами санитарно-защитной зоны радиационного объекта.
  2. Ранняя фаза. Период продолжается от несколько минут и часов (разовый выброс) до нескольких суток (продолжительный выброс). Происходит сброс радиации в окружающую среду и населенную людьми территорию.
  3. Средняя фаза. Период продолжается от нескольких дней до года. Особенность - дополнительный выброс радиоактивных продуктов не наблюдается.
  4. Поздняя фаза. Период восстановления, когда население возвращается к нормальной и привычной жизнедеятельности. Фаза занимает несколько недель, лет или даже десятилетий - в зависимости от особенностей радиоактивного загрязнения. Начинается она после того, как отпадает необходимость выполнять защитные меры.

Последствия

В результате катастроф с выбросом радиоактивных продуктов происходит радиационное загрязнение атмосферы и гидросферы. Вещества попадают в продукты питания и воду и могут вызвать у людей и животных лучевую болезнь, отравления и инфекции. Радиационное воздействие на живые организмы может быть внутренним или внешним, а также контактным.

К радиационным авариям нельзя подготовиться, случаются они всегда неожиданно. Ядерные технологии - это не только нескончаемый источник энергии, это ещё и бомба замедленного действия, способная однажды уничтожить все человечество.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

    Определение понятия «радиационная авария».

    Классификация радиационных аварий по последствиям.

    Международная шкала аварий на АЭС. Аварии и происшествия.

    Стадии развития радиационной аварии.

    Этапы радиационно-защитных мероприятий на разных стадиях развития радиационной аварии.

    Зонирование загрязненных территорий.

    Мероприятия при обнаружении локальных радиоактивных загрязнений.

Авария радиационная - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к незапланированному облучению людей или радиоактивному загрязнению окружающей среды, превышающим величины, регламентированные для контролируемых условий.

Радиационные аварии, не связанные с АЭС, по их последствиям делят на 5 групп:

I – аварии, которые не приводят к облучению персонала, лиц из населения (выше ДП) или загрязнению производственной и окружающей среды, не создают реальной опасности переоблучения или загрязнения и требуют расследования причин их возникновения;

II – аварии, в результате которых персонал и лица из населения получили дозу внешнего облучения (выше ДП);

III – аварии, при которых была загрязнена производственная или окружающая среда (выше ДУ);

IV – аварии, в результате которых персонал и лица из населения получили дозу внешнего и внутреннего облучения выше значений, предусмотренных НРБ-99;

V – аварии, в результате которых произошло внешнее и внутреннее облучение персонала, лиц из населения и загрязнение окружающей среды (группы III и IV настоящей классификации).

Международная шкала аварий на аэс

Аварии

VII уровень – Глобаль ная . Выброс в окружающую среду большей части радиоактивных продуктов, накопленных в активной зоне, в результате которого будут превышены дозовые пределы для запроектных аварий. Возможны острые лучевые поражения.

Длительное воздействие на здоровье населения, проживающего на большой территории, включающей более чем одну страну.

Длительное воздействие на окружающую среду.

VI уровень – Тяжелая . Выброс в окружающую среду большого количества радиоактивных продуктов, накопленных в активной зоне, в результате которого дозовые пределы для проектных аварий будут превышены, а для запроектных – нет. Для ослабления серьезного влияния на здоровье населения необходимо введение планов мероприятий по защите персонала и населения в случае аварий в зоне радиусом 25 км, включающих эвакуацию населения.

V уровень - С риском для ок ружаю щей среды. Выброс в окружающую среду такого - количества продуктов деления, который приводит к незначительному повышению дозовых пределов для проектных аварий и радиационно эквивалентных выбросу порядка сотни ТБк 131 I Разрушение большей части активной зоны, вызванное механическим воздействием или плавлением с превышением максимального проектного предела повреждения твэлов.

В некоторых случаях требуется частичное введение планов мероприятий по защите персонала и населения в случае аварий (местная йодная профилактика и/или частичная эвакуация) для уменьшения влияния облучения на здоровье населения.

IV уровень - В преде лах АЭС . Выброс радиоактивных продуктов в окружающую среду в количестве, превышающем значения для уровня 3, который привел к переоблучению части персонала, но в результате которого не будут превышены дозовые пределы для населения. Однако требуется контроль продуктов питания населения.

Происшествия

III уровень – Серьез ное . Выброс в окружающую среду радиоактивных продуктов выше допустимого суточного, но не превышающий 5-кратного допустимого суточного выброса газообразных летучих радиоактивных продуктов и аэрозолей и/или 1/10 годового допустимого сброса со сбросными водами.

Высокий уровень радиации и/или большое загрязнение поверхностей на АЭС, обусловленные отказом оборудования или ошибками эксплуатации. События, в результате которых происходит значительное переоблучение работающих (доза > 50 мЗв).

При рассматриваемом выбросе не требуется принимать защитных мер за пределами площадки. Происшествия, при которых дальнейшие отказы в системах безопасности должны привести к авариям или ситуациям, где системы безопасности не будут способны предотвратить аварию, если произойдет исходное событие.

II уровень - Средней тяжести. Отказы оборудования или отклонения от нормальной эксплуатации, которые хотя и не влияют непосредственно на безопасность станции, но способны привести к значительной переоценке мер по безопасности.

I уровень – Незна читель ное . Функциональные отклонения в управлении, которые не представляют какого-либо риска, но указывают на недостатки в обеспечении безопасности. Эти отклонения могут возникнуть из-за отказа оборудования, ошибки эксплуатационного персонала или недостатков руководства по эксплуатации (такие события должны отличаться от отклонений без превышения пределов безопасной эксплуатации, при которых управление станцией осуществляется в соответствии с установленными требованиями. Эти отклонения, как правило, считаются «ниже уровня шкалы»).

0 уровень - Ни же уро вня шка лы . Не влияет на безопасность.

Для практических целей по основному этиологическому фактору принято выделять следующие возможные варианты аварийного облучения:

1. Воздействие внешнего излучения (гамма- и рентгеновского, бета-гамма-, гамма-нейтронного и др.).

2. Внутреннее облучение от попавших в организм радионуклидов.

3. Сочетанное радиационное воздействие внешних источников излучения и внутреннего облучения.

4. Комбинированное воздействие радиационных и нерадиационных факторов.

ОСТРЫЕ ВОЗДЕЙСТВИЯ ВНЕШНЕГО ИЗЛУЧЕНИЯ

В литературе представлены многочисленные сведения о случаях острого воздействия на людей внешнего гамма-излучения. Причинами аварийных ситуаций при этом, как правило, являются грубые нарушения правил хранения, эксплуатации, транспортирования источников при дефектоскопии, работе с эталонами и реже манипуляции на стационарных гамма-источниках, в первую очередь при зарядке облучательских установок (неисправность блокировки или сигнализации). Значительное число случаев происходит в связи с недостатками организации работ. Часть из них может быть отнесена к категории ситуаций с «незамеченным источником», подчас становящимся доступным лицам, недостаточно осведомленным о правилах работы с источниками ионизирующих излучений.

Число участников аварийной ситуации может быть различным – от единиц до нескольких десятков человек. При этом наблюдаются все варианты по тяжести поражения – от крайне тяжелых, с общими и местными симптомами заболевания, до слабовыраженных. В случаях с «незамеченным источником» число лиц, подлежащих обследованию по подозрению на облучение, в 5–10 раз больше, чем реально пострадавших.

Из встречающихся на практике видов ионизирующих излучений гамма-излучение является наиболее проникающим. При прохождении моноэнергетического гамма-излучения через среду оно ослабляется по экспоненциальному закону. Его проникающую способность нельзя охарактеризовать пробегом в среде, но можно косвенно представить толщиной слоя половинного ослабления. Последняя в воздухе измеряется метрами, а в биологической ткани - сантиметрами и дециметрами. Наиболее распространенные гамма-излучающие нуклиды могут быть расположены по мере уменьшения проникающей способности излучения в следующий ряд: 60 Co, 137 Cs, 192 Ir.

Для возникающих от источников внешнего гамма-излучения поражений чаще характерно резко неравномерное облучение, при котором на разные части и сегменты тела приходятся существенно различающиеся дозы.

При любом одностороннем воздействии гамма-излучения равномерное облучение практически невозможно из-за существенного перепада дозы по глубине и высоте тела человека. Чем ближе пострадавший находится к источнику, тем эта неравномерность больше. Довольно часто положение и поза работающего приводят к преимущественному облучению отдельных частей тела (вытянутые по направлению к источнику конечности, наклоненная к источнику голова). В такого рода случаях возможно развитие локальной формы поражения. Чаще же всего имеет место сочетание общего облучения в той или иной (иногда небольшой) дозе с дополнительным воздействием на отдельные сегменты тела. Соотношение и уровень доз при общем и местном облучении, размер и объем тканей, подвергающихся повышенному облучению, во многом обусловливают исход радиационного поражения.

Острые воздействия бета-гамма-излучения возможны при нарушении правил ведения работы с гамма-бета-источниками, при нарушении герметичности упаковки с поступлением в окружающую среду гамма-бета-радиоактивных веществ в жидком, аэрозольном или газообразном состоянии. При этом могут возникнуть поражения, обусловленные сочетанным воздействием двух факторов.

Сочетание внешнего бета и гамма-облучений, иногда с отложением радиоактивных веществ на коже и слизистых оболочках дыхательных путей и глаз, имеет место при авариях ядерных установок с нарушением целостности технологических коммуникаций. При этом пострадавшие, в зависимости от конкретных условий (характер аварии, тип установки, объем пространства), могут подвергаться воздействию:

радиоактивных благородных газов;

проникающего излучения от загрязненной местности в случае нарушения герметичности установки или выброса из активной зоны реактора смеси продуктов деления различного возраста;

радиоактивных веществ, апплицированных на коже и слизистых оболочках глаз и дыхательных путей;

радиоактивных веществ, поступающих в организм при ингаляции, заносе и загрязненных кожных покровов или при использовании пищи и воды, содержащих нуклиды.

Сочетания отдельных компонентов воздействия могут быть различными. В каждом случае исход радиационного поражения будет зависеть от уровня и соотношения дозы при общем и местном облучении и, что очень существенно, от размеров поверхности тела, подвергшейся «дополнительному» локальному облучению.

Результат действия совокупности указанных радиационных факторов на людей существенно зависит от того, были ли на них специальные защитные костюмы и находились ли они на открытой местности или в укрытии (в автомашинах, зданиях и различных сооружениях). В зависимости от степени защиты воздействие может ограничиться только общим внешним облучением или сочетанным действием нескольких факторов. Как показывает опыт, число пострадавших может колебаться в широких пределах - от одного человека до множества людей.

Примером сходной по совокупности действующих факторов ситуации является обстановка, создавшаяся в связи с испытанием ядерного оружия на Маршалловых островах, у жителей которых развились радиационные поражения от воздействия бета- и гамма-излучений радиоактивных осадков экспериментального взрыва термоядерной бомбы.

Бета-излучение имеет конечный пробег в веществе, который в воздухе измеряется дециметрами – метрами, а в биологической ткани составляет несколько миллиметров. Внешнее бета-излучение действует главным образом на кожу, а при большой энергии бета-частиц - также на подкожные ткани и хрусталики глаз. Остальные органы не подвергаются воздействию внешних потоков бета-частиц. При тотальном воздействии или большой площади бета-облучения кожи она может становиться критическим органом. Локальные облучения потоками бета-частиц тоже наблюдаются, но относительно реже, чем в сочетании с гамма-излучением.

Опыт аварийных ситуаций с воздействием бета-, гамма-излучения в масштабе как крупных ядерных катастроф, так и случаев разгерметизации источников бета- гамма-излучения различной активности убедительно демонстрирует определяющую роль внешнего бета-, гамма-излучения в сравнении с поступлением радионуклидов в организм. Подтверждением этому служат ситуации при авариях на атомных реакторах в Уиндскейле, и на АЭС Три-Майл-Айленд и ЧАЭС.

Воздействия на человека внешнего гамма-нейтронного излучения имели место при нарушении правил техники безопасности в лабораториях научно-исследовательских учреждений или на действующих ядерно-энергетических установках, при ведении работ по геологическому каротажу, при экспрессном химическом анализе и других работах.

Наибольшую опасность представляют аварии ядерных установок, вызванные развитием самопроизвольных цепных реакций. Это относится, в частности, к «критическим сборкам», у которых, в отличие от стационарных энергетических установок, отсутствует специальная защита. Самопроизвольные цепные реакции могут возникнуть также в емкостях с раствором делящегося вещества (например, урана или плутония), когда масса его превысит критическую.

Мировая практика свидетельствует, что при массивном воздействии гамма-нейтронного излучения облучение тела пострадавших является обычно резко неравномерным. Гамма- и нейтронное излучения являются косвенно ионизирующими. Тканевая доза нейтронов обусловлена поглощенной энергией вторичного излучения, возникающего при их взаимодействии с тканями организма. Характер распределения дозы в тканях и вклад в дозу различных компонентов зависят от энергии нейтронов, геометрических размеров облучаемого объекта и распределения химических элементов в ткани. Неоднородность распределения дозы в объеме тела тем больше, чем выше доля нейтронов деления и меньше расстояние пострадавшего до источника. Относительная биологическая эффективность нейтронов разных энергий по сравнению с гамма-излучением усиливает создающуюся неравномерность распределения дозы по телу. При прохождении через тело человека нейтронное излучение ослабляется меньше, чем бета-излучение, но в большей степени, чем гамма-излучение. Так, при направленном пучке доза нейтронов может ослабляться в торсе человека в десятки раз, а гамма-излучение - в 2-4 раза. В случае экранирования отдельных частей тела различными предметами изменяется не только уровень облучения, но и спектр компонентного состава излучения, поскольку гамма-излучение и нейтроны различных энергий ослабляются существенно различно. Таким образом, соотношение поглощенных доз гамма-излучения и нейтронов зависит не только от спектра энергии компонентов излучения источника, но и от условий облучения (наличие различных предметов, экранов и т.п.), изменяется по глубине облучаемой ткани и может несколько различаться у пострадавших в одной и той же аварии.

При некоторых обстоятельствах (нарушение целостности активной зоны на критических сборках или реакторах, при ядерных взрывах) аварийное облучение может сопровождаться попаданием внутрь организма продуктов деления урана или плутония, т.е. может иметь место сочетанное воздействие различных радиационных факторов.

Число пострадавших в авариях от гамма-нейтронного излучения при СЦР в лабораториях, как правило, невелико (3-10 человек).

При современном техническом уровне организации работ на ускорителях частиц высоких энергий (линейный ускоритель, электростатический генератор Ван-де-Граафа, циклотрон, бетатрон, синхротрон, синхрофазотрон, синхроциклотрон и др.) воздействия потоков частиц (протоны, дейтроны и другие частицы) в повышенной дозе редки, носят чаще локальный характер. Своеобразием их действия является достижение высоких локальных доз в строго определенном ограниченном объеме, соответственно геометрии источник-объект. Однако распределение дозы требует учета всех компонентов, в том числе и относительной доли низкоэнергетических излучений, а также условий воздействия (угол наклона падения потока частиц по отношению к облучаемой поверхности и пр.).

В зону повреждения попадают ткани различной радиочувствительности, поэтому их поражение формируется даже при относительной близости поглощенных доз в различные сроки. Исход во многом зависит от локализации излучения и заключенных в облученном сегменте критических структур.

ВНУТРЕННЕЕ ОБЛУЧЕНИЕ ОТ ПОСТУПЛЕНИЯ РАДИОНУКЛИДОВ В ОРГАНИЗМ

Поступление радионуклидов в организм в количествах, превышающих допустимое годовое поступление (ДГП), возможно лишь при нарушении аргументированных регламентов работы, несоблюдении санитарных правил работы с радиоактивными веществами и норм радиационной безопасности. Облучение в повышенной дозе может касаться различных категорий облучаемых лиц.

В условиях профессионального контакта подобные ситуации описаны при нарушениях правил ведения научно-исследовательских работ в лабораториях, при работе в ремонтных зонах атомных электростанций и ядерно-энергетических установок, при получении ядерного топлива, производстве и использовании различных радионуклидов для технических, исследовательских и медицинских целей, при промышленном использовании соединений радия, полония, трития, стронция и др.

Поступление радиоактивных веществ в организм лиц из населения возможно при нарушении системы очистки воздуха рабочих помещений атомных электростанций и радиохимических предприятий и при аварийных производственных выбросах, загрязнении источников водоснабжения и питания производственными отходами и продуктами экспериментальных ядерных взрывов, разгерметизации похищенных радиоактивных источников, незаконном проникновении людей в места захоронения отходов и т.д. В зависимости от обстоятельств число лиц с подозрением на поступление нуклидов может колебаться от единиц до нескольких сотен.

Закономерности формирования дозовых нагрузок в организме или отдельных органах (распределение и динамика) зависят от многих факторов: путей поступления, дисперсности, форм растворимости и валентности, транспортабельности поступающих соединений вещества. Существенно отличается их распределение по органам (равномерное или органотропное) и микроструктурам. Различны параметры обмена и кинетики (коэффициенты резорбции и отложения, постоянные и периоды полувыведения). Периоды полувыведения для одних нуклидов могут составлять доли секунд, для других – сотни лет, т.е. превосходить продолжительность жизни человека.

Уровень формирующихся доз зависит, кроме того, от типа излучателя и его энергии, приходящейся на один распад, количества поступившего радионуклида и создающейся при этом концентрации вещества на единицу массы в рассматриваемом органе.

Часть ситуаций с попаданием радиоактивных веществ в организм может сопровождаться одновременно воздействием внешнего излучения, т.е. происходит сочетанное радиационное воздействие.

Реальные ситуации показывают, что при сочетании внешнего и внутреннего облучения преобладающим чаще является действие внешнего фактора. Следует, однако, учитывать, что внутреннее облучение может быть длительным, в то время как прямое действие внешних источников излучения на организм прекращается с выводом человека из поля их действия, и это требует большого внимания на всех этапах оказания помощи, носящей профилактический характер.

В реальных условиях влияние радиационных факторов обычно сочетается с воздействием токсических и иных нерадиационных факторов. Внешняя среда в лабораториях, предприятиях сложная, многофакторная. Таким образом, следует попытаться выделить основные ведущие и сопутствующие факторы либо учитывать их сочетанное действие. Закономерным в этих сочетаниях зачастую является преобладающее влияние нерадиационных факторов (ожог, травма, отравление угарным газом при пожаре, поступлении окиси азота, фтора, концентрированных кислот и щелочей).

Требования по ограничен и ю облучения населен и я в услов и ях рад и ац и онной авар и и

В случае возникновения аварии, при которой облучение людей может превысить основные дозовые пределы от техногенного облучения, должны быть приняты практические меры для восстановления контроля над источником и сведения к минимуму доз облучения, количества облученных лиц из населения, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.

При радиационной аварии или обнаружении радиоактивного загрязнения ограничение последующего облучения осуществляется защитными мероприятиями, применимыми, как правило, к окружающей среде и (или) к человеку. Эти мероприятия связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории, т. е. являются вмешательством, влекущим за собой не только экономический ущерб, но и неблагоприятное воздействие на здоровье населения, психологическое воздействие на население и экологический ущерб. Поэтому при принятии решений о характере вмешательства (защитных мероприятий) следует руководствоваться следующими принципами:

Предлагаемое вмешательство должно принести обществу и, прежде всего облучаемым лицам больше пользы, чем вреда, т. е. уменьшение ущерба в результате снижения дозы должно быть достаточным, чтобы оправдать вред и стоимость вмешательства, включая его социальную стоимость (принцип обоснования вмешательства);

Форма, масштаб и длительность вмешательства должны быть оптимизированы таким образом, чтобы чистая польза от снижения дозы, т. е. польза от снижения радиационного ущерба за вычетом ущерба, связанного с вмешательством, была бы максимальной (принцип оптимизации вмешательства). Однако если предполагаемая доза облучения достигает уровней, при превышении которых возможны клинически определяемые эффекты (табл. 28), срочное вмешательство (меры защиты) безусловно необходимо.

Таблица 28.

ПРОГНОЗИРУЕМЫЕ УРОВНИ ОБЛУЧЕНИЯ, ПРИ КОТОРЫХ БЕЗУСЛОВНО НЕОБХОДИМО СРОЧНОЕ ВМЕШАТЕЛЬСТВО

Уровни вмешательства для временного отселения населения составляют: для начала временного отселения - 30 мЗв в месяц, для окончания временного отселения 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос об отселении населения на постоянное место жительства.

При проведении противорадиационных вмешательств дозовые пределы (табл. 3) не применяются. Исходя из указанных принципов, при планировании защитных мероприятий на случай радиационной аварии органами госсанэпиднадзора устанавливаются уровни вмешательства (дозы и мощности доз облучения, уровни радиоактивного загрязнения) применительно к конкретному радиационно-опасному объекту и условиям его размещения с учетом вероятных типов аварии, сценариев развития аварийной ситуации и складывающейся радиационной обстановки.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА). ЗРА определяется как территория, на которой суммарное внешнее и внутреннее облучение в единицах эффективной дозы может превышать 5 мЗв за первый после аварии год (средняя по населенному пункту). В зоне радиационной аварии проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации.

Принятие решений о мерах защиты населения в случае крупной радиационной аварии с радиоактивным загрязнением территории проводится на основании сравнения прогнозируемой дозы, предотвращаемой защитным мероприятием, с уровнями А и Б, приведенными в табл. 29–31.

Таблица 29.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ НЕОТЛОЖНЫХ РЕШЕНИЙ В НАЧАЛЬНОМ ПЕРИОДЕ АВАРИЙНОЙ СИТУАЦИИ

Меры защиты

Прогнозируемая доза за первые 10 суток, мГр

на все тело

Щитовидная железа, легкие, кожа

Уровень А

Уровень Б

Уровень А

Уровень Б

профилактика взрослые

Эвакуация

*Тольк о для щитовидной железы

Таблица 30.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОТСЕЛЕНИИ И ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПИЩЕВЫХ ПРОДУКТОВ

Таблица 31.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПРОДУКТОВ ПИТАНИЯ В ПЕРВЫЙ ГОД ПОСЛЕ ВОЗНИКНОВЕНИЯ АВАРИИ

Если уровень облучения, предотвращаемого защитным мероприятием, не превосходит предела А, нет необходимости в выполнении мер защиты, связанных с нарушением нормальной жизнедеятельности населения и хозяйственного и социального функционирования территории.

Если предотвращаемое защитным мероприятием облучение превосходит уровень А, но не достигает уровня Б, решение о выполнении мер защиты принимается по принципам обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Если уровень облучения, предотвращаемого защитным мероприятием, достигает и превосходит предел Б, необходимо выполнение соответствующих мер защиты, даже если они связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории.

На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально-экономических условий.

Кри т ерии вмеша т ельства на загрязненных территориях

    Защита населения на территориях, подвергшихся радиоактивному загрязнению, осуществляется путем вмешательства на основе принципов безопасности при вмешательстве. При любых восстановительных действиях вмешательства необходимо обеспечить непревышение уровня пороговых нестохастических эффектов.

    Числовые значения критериев вмешательства для территорий, загрязненных в результате радиационных аварий, и вмешательства при обнаружении локальных радиоактивных загрязнений (“последствий прежней деятельности”) различаются.

1) 03.03.1949. СССР.
В результате массового сброса комбинатом «Маяк» в реку Теча высокоактивных жидких радиоактивных отходов облучению подверглись около 124 тысяч человек в 41 населенном пункте . Наибольшую дозу облучения получили 28 100 человек, проживавших в прибрежных населенных пунктах по реке Теча. У части из них были зарегистрированы случаи хронической лучевой болезни.

2) 12.12.1952. Канада. АЭС Чолк-Ривер (штат Онтарио).
Техническая ошибка персонала АЭС Чолк-Ривер привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалёку от реки Оттавы.

3) 29.09.1957. СССР. Комбинат "Маяк" в Челябинской области.
Авария, получившая название «Кыштымская». В хранилище радиоактивных отходов ПО «Маяк» взорвалась ёмкость, содержавшая 20 миллионов кюри радиоактивности. Специалисты оценили мощность взрыва в 70-100 тонн в тротиловом эквиваленте. Радиоактивное облако от взрыва прошло над Челябинской, Свердловской и Тюменской областями , образовав так называемый Восточно-Уральский радиоактивный след площадью свыше 20 тысяч кв. км. По оценкам специалистов, в первые часы после взрыва, до эвакуации с промплощадки комбината, подверглись разовому облучению до 100 рентген более пяти тысяч человек . В ликвидации последствий аварии в период с 1957 по 1959 год участвовали от 25 тысяч до 30 тысяч военнослужащих. В советское время катастрофа была засекречена.

4) 10.10.1957. Великобритания. Реактор в Виндскейле.
Авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии .

5) Апрель 1967.СССР. Комбинат "Маяк" в Челябинской области.
Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

6) 28.03.1979. США. АЭС Тримайл-Айленд в штате Пенсильвания.
В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов – ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

7) 10.08.1985. СССР . АПЛ К-431 в бухте Чажма.
Авария произошла при перезагрузке ядерного топлива в реакторы. Из-за нарушений технологии проведения операции произошел взрыв с выбросом радиоактивного содержимого. В результате взрыва на АПЛ образовалась трещина в корпусе. 10 человек погибли на месте. В ликвидации аварии были задействованы более 2 тыс. человек, но в последствии пострадавшими от радиации признали только 239. Радиоактивному загрязнению подверглось около 30% территории завода, стоящие возле объекта корабли, пирсовая зона. Сформировался след радиоактивного заражения шириной 600-1500 м и длиной 6-8 км. След пролёг по лесистой местности в направлении Уссурийского залива.

8) 25.04.1986. СССР. Чернобыльская АЭС.
Крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России.Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

9) 11.03.2011. Япония . АЭС Фукусима-1. Последствия ещё только предстоит оценить. На сегодняшний день вторая по масштабности ядерная катастрофa после чернобыльской.

Заслуживает упоминания происшествие на заводе «Красное Сормово» (не вошел в список т.к. не было прямого выброса во внешнюю среду, но зараженные радиацией люди всё же покинули территорию завода).

5а) 18.01.1970. СССР . Завод «Красное Сормово» (Нижний Новгород).
При строительстве атомной подводной лодки К 320 произошёл неразрешённый запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно. В цехе находилось около 1000 рабочих . Радиоактивного заражения местности удалось избежать из-за закрытости цеха. В тот день многие ушли домой, не получив необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу, трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.
Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

Произошли в ходе наработки ядерных материалов для первых атомных бомб.

1 сентября 1944 года в США, штат Теннеси, в Ок-Риджской национальной лаборатории при попытке прочистить трубу в лабораторном устройстве по обогащению урана произошел взрыв гексафторида урана, что привело к образованию опасного вещества - гидрофтористой кислоты. Пять человек, находившихся в это время в лаборатории, пострадали от кислотных ожогов и вдыхания смеси радиоактивных и кислотных паров. Двое из них погибли, а остальные получили серьезные травмы.

В СССР первая тяжелая радиационная авария произошла 19 июня 1948 года , на следующий же день после выхода атомного реактора по наработке оружейного плутония (объект «А» комбината «Маяк» в Челябинской области) на проектную мощность. В результате недостаточного охлаждения нескольких урановых блоков произошло их локальное сплавление с окружающим графитом, так называемый «козел». В течение девяти суток «закозлившийся» канал расчищался путем ручной рассверловки. В ходе ликвидации аварии облучению подвергся весь мужской персонал реактора, а также солдаты строительных батальонов, привлеченные к ликвидации аварии.

3 марта 1949 года в Челябинской области в результате массового сброса комбинатом «Маяк» в реку Теча высокоактивных жидких радиоактивных отходов облучению подверглись около 124 тысяч человек в 41 населенном пункте. Наибольшую дозу облучения получили 28 100 человек, проживавших в прибрежных населенных пунктах по реке Теча (средняя индивидуальная доза - 210 мЗв). У части из них были зарегистрированы случаи хронической лучевой болезни.

12 декабря 1952 года в Канаде произошла первая в мире серьезная авария на атомной электростанции. Техническая ошибка персонала АЭС Чолк-Ривер (штат Онтарио) привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалеку от реки Оттавы.

29 ноября 1955 года «человеческий фактор» привел к аварии американский экспериментальный реактор EBR-1 (штат Айдахо, США). В процессе эксперимента с плутонием, в результате неверных действий оператора, реактор саморазрушился, выгорело 40% его активной зоны.

29 сентября 1957 года произошла авария, получившая название «Кыштымская». В хранилище радиоактивных отходов ПО «Маяк» в Челябинской области взорвалась емкость, содержавшая 20 миллионов кюри радиоактивности. Специалисты оценили мощность взрыва в 70-100 тонн в тротиловом эквиваленте. Радиоактивное облако от взрыва прошло над Челябинской, Свердловской и Тюменской областями, образовав так называемый Восточно-Уральский радиоактивный след площадью свыше 20 тысяч кв. км. По оценкам специалистов, в первые часы после взрыва, до эвакуации с промплощадки комбината, подверглись разовому облучению до 100 рентген более пяти тысяч человек. В ликвидации последствий аварии в период с 1957 по 1959 год участвовали от 25 тысяч до 30 тысяч военнослужащих. В советское время катастрофа была засекречена.

10 октября 1957 года в Великобритании в Виндскейле произошла крупная авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии.

В апреле 1967 года произошел очередной радиационный инцидент в ПО «Маяк». Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

В 1969 году произошла авария подземного ядерного реактора в Люценсе (Швейцария). Пещеру, где находился реактор, зараженную радиоактивными выбросами, пришлось навсегда замуровать. В том же году произошла авария во Франции: на АЭС «Святой Лаврентий» взорвался запущенный реактор мощностью 500 мВт. Оказалось, что во время ночной смены оператор по невнимательности неправильно загрузил топливный канал. В результате часть элементов перегрелась и расплавилась, вытекло около 50 кг жидкого ядерного топлива.

18 января 1970 года произошла радиационная катастрофа на заводе «Красное Сормово» (Нижний Новгород). При строительстве атомной подводной лодки К 320 произошел неразрешенный запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно.

В цехе находилось около 1000 рабочих. Радиоактивного заражения местности удалось избежать из-за закрытости цеха. В тот день многие ушли домой, не получив необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу, трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.

Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

Семичасовой пожар 22 марта 1975 года на реакторе АЭС «Браунс Ферри» в США (штат Алабама) обошелся в 10 млн долларов. Все случилось после того, как рабочий с зажженной свечой в руке полез заделать протечку воздуха в бетонной стене. Огонь был подхвачен сквозняком и распространился через кабельный канал. АЭС на год была выведена из строя.

Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года . В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов - ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

В ночь с 25 на 26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

30 сентября 1999 года произошла крупнейшая авария в истории атомной энергетики Японии. На заводе по изготовлению топлива для АЭС в научном городке Токаймура (префектура Ибараки) из-за ошибки персонала началась неуправляемая цепная реакция, которая продолжалась в течение 17 часов. Облучению подверглись 439 человек, 119 из них получили дозу, превышающую ежегодно допустимый уровень. Трое рабочих получили критические дозы облучения. Двое из них скончались.

9 августа 2004 года произошла авария на АЭС «Михама», расположенной в 320 километрах к западу от Токио на о.Хонсю. В турбине третьего реактора произошел мощный выброс пара температурой около 200 градусов по Цельсию. Находившиеся рядом сотрудники АЭС получили серьезные ожоги. В момент аварии в здании, где расположен третий реактор, находились около 200 человек. Утечки радиоактивных материалов в результате аварии не обнаружено. Четыре человека погибли, 18 - серьезно пострадали. Авария стала самой серьезной по числу жертв на АЭС в Японии.