Извлечение корня из числа. Математика, которая мне нравится

Соколов Лев Владимирович, учащийся 8 класса МКОУ «Тугулымская В(С)ОШ»

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Скачать:

Предварительный просмотр:

Районная научно-практическая конференция

обучающихся Тугулымского городского округа

Извлечение квадратных корней из больших чисел без калькулятора

Исполнитель: Лев Соколов,

МКОУ «Тугулымская В(С)ОШ»,

8 класс

Руководитель: Сидорова Татьяна

Николаевна

р.п. Тугулым, 2016 г.

Введение 3

Глава 1. Способ разложения на простые множители 4

Глава 2. Извлечение квадратного корня уголком 4

Глава 3. Способ использования таблицы квадратов двузначных чисел 6

Глава 4. Формула Древнего Вавилона 6

Глава 6. Канадский метод 7

Глава 7. Метод подбора угадыванием 8

Глава 8 . Метод вычетов нечётного числа 8

Заключение 10

Список литературы 11

Приложение 12

Введение

Актуальность исследования, когда я изучал тему квадратные корни в этом учебном году, то меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора.

Я заинтересовался и решил изучить этот вопрос глубже, чем он изложен в школьной программе, а также приготовить мини-книжечку с наиболее простыми способами извлечения квадратных корней из больших чисел без калькулятора.

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Задачи:

  1. Изучить литературу по данному вопросу.
  2. Рассмотреть особенности каждого найденного способа и его алгоритм.
  3. Показать практическое применение полученных знаний и оценить

Степень сложности в использовании различных способов и алгоритмов.

  1. Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: математические символы – квадратные корни.

Предмет исследования: особенности способов извлечения квадратных корней без калькулятора.

Методы исследования:

  1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.
  2. Сравнение найденных способов.
  3. Анализ полученных способов.

Все знают, что извлечь квадратный корень без калькулятора - это очень сложная

задача. Когда нет под рукой калькулятора, то начинаем методом подбора стараться вспомнить данные из таблицы квадратов целых чисел, но это не всегда помогает. Например, таблица квадратов целых чисел не даёт ответ на такие вопросы, как, например, извлечь корень из 75, 37,885,108,18061 и другие даже приблизительно.

Также часто на экзаменах ОГЭ и ЕГЭ пользование калькулятором запрещено и нет

таблицы квадратов целых чисел, а надо извлечь корень из 3136 или 7056 и т.д.

Но изучая литературу по данной теме, я узнал, что извлекать корни из таких чисел

возможно и без таблицы и калькулятора, люди научились задолго до изобретения микрокалькулятора. Исследуя эту тему, я нашел несколько способов решения данной проблемы.

Глава 1. Способ разложения на простые множители

Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения.

Таким способом принято пользоваться при решении заданий с корнями в школе.

3136│2 7056│2

1568│2 3528│2

784│2 1764│2

392│2 882│2

196│2 441│3

98│2 147│3

49│7 49│7

7│7 7│7

√3136 = √2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56 √3136 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84

Многие применяют его успешно и считают единственным. Извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2∙2∙52441. А как быть дальше? С этой задачей сталкиваются все, и спокойно в ответе записывают остаток от разложения под знак корня. Методом проб и ошибок, подбором разложение, конечно, можно сделать, если быть уверенным в том, что получится красивый ответ, но практика показывает, что очень редко предлагаются задания с полным разложением. Чаще мы видим, что корень до конца не извлечь.

Поэтому, этот способ лишь частично решает проблему извлечения без калькулятора.

Глава 2. Извлечение квадратного корня уголком

Для извлечения квадратного корня уголком и рассмотрим алгоритм:
1-й шаг. Число 8649 разбиваем на грани справа налево; каждая из которых должна содержать две цифры. Получаем две грани:
.
2-й шаг. Извлекаем квадратный корень из первой грани 86, получаем
с недостатком. Цифра 9 –это первая цифра корня.
3-й шаг. Число 9 возводим в квадрат (9
2 = 81) и число 81 вычитаем из первой грани, получаем 86- 81=5. Число 5 – первый остаток.
4-й шаг. К остатку 5 приписываем вторую грань 49, получаем число 549.

5-й шаг . Удваиваем первую цифру корня 9 и, записывая слева, получаем-18

К числу нужно приписать такую наибольшую цифру, чтобы произведение числа, которое мы получим, на эту цифру было бы либо равно числу 549, либо меньше, чем 549. Это цифра 3. Она находится путем подбора: количество десятков числа 549, то есть число 54 делится на 18, получаем 3, так как 183 ∙ 3 = 549. Цифра 3 – это вторая цифра корня.

6-й шаг. Находим остаток 549 – 549 = 0. Так как остаток равен нулю, то мы получили точное значение корня – 93.

Пприведу еще пример: извлечь √212521

Шаги алгоритма

Пример

Комментарии

Разбить число на группы по 2 цифры в каждой справа налево

21’ 25’ 21

Общее число образовавшихся групп определяет количество цифр в ответе

Для первой группы цифр подобрать цифру, квадрат которой будет наибольшим, но не превосходящим числа первой группы

1 группа – 21

4 2 =16

цифра - 4

Найденная цифра записывается в ответе на первом месте

Из первой группы цифр вычесть найденный на шаге 2 квадрат первой цифры ответа

21’ 25’ 21

К остатку, найденному на шаге 3, приписать справа (снести) вторую группу цифр

21’ 25’ 21

16__

К удвоенной первой цифре ответа приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру было наибольшим, но не превосходила числа, найденного на шаге 4

4*2=8

цифра – 6

86*6=516

Найденная цифра записывается в ответе на втором месте

Из числа, полученного на шаге 4 вычесть число, полученное на шаге 5. Снести к остатку третью группу

21’ 25’ 21

К удвоенному числу, состоящему из первых двух цифр ответа, приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру был наибольшим, но не превосходило числа, полученного на шаге 6

46*2=92

цифра 1

921*1=921

Найденная цифра записывается в ответе на третьем месте

Записать ответ

√212521=461

Глава 3. Способ использования таблицы квадратов двузначных чисел

Про этот способ я узнал из Интернета. Способ очень простой и даёт мгновенное извлечение квадратного корня из любых целых чисел от 1 до 100 с точностью до десятых без калькулятора. Одно условие для этого метода – наличие таблицы квадратов чисел до 99.

(Она есть во всех учебниках алгебры 8 класса, и на экзамене ОГЭ предлагается в качестве справочного материала.)

Откройте таблицу и проверьте скорость нахождения ответа. Но сначала несколько рекомендаций: самый левый столбик – это будут в ответе целые, самая верхняя строчка – это десятые в ответе. А дальше всё просто: закройте две последние цифры числа в таблице и найдите нужное вам, не превосходящее подкоренное число, и далее действуйте по правилам этой таблицы.

Рассмотрим на примере. Найдём значение √87.

Закрываем две последние цифры у всех чисел в таблице и находим близкие для 87 – таких только два 86 49 и 88 37. Но 88 – это уже много.

Значит, остаётся только одно – 8649.

Левый столбик даёт ответ 9 (это целых), а верхняя строчка 3 (это десятых). Значит √87≈ 9,3. Проверим на МК √87 ≈ 9,327379.

Быстро, просто, доступно на экзамене. Но сразу понятно, что корни, большие 100 уже этим способом извлечь невозможно. Способ удобен для заданий с маленькими корнями и при наличии таблицы.

Глава 4. Формула Древнего Вавилона

Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

Глава 5. Способ отбрасывания полного квадрата

(только у четырехзначных чисел)

Сразу стоит уточнить, что этот способ применим только для извлечения квадратного корня из точного квадрата, а алгоритм нахождения зависит от величины подкоренного числа.

  1. Извлечение корней до числа 75 2 = 5625

Например: √¯3844 = √¯ 37 00 + 144 = 37 + 25 = 62.

Число 3844 представим в виде суммы, выделив из этого числа квадрат 144, затем выделенный квадрат отбрасываем, к числу сотен первого слагаемого (37) прибавляем всегда 25 . Получим ответ 62.

Так можно извлекать только квадратные корни до числа 75 2 =5625!

2) Извлечение корней после числа 75 2 = 5625

Как же устно извлечь квадратные корни из чисел больше 75 2 =5625?

Например: √7225 = √ 70 00 + 225 = 70 + √225 = 70 + 15 = 85.

Поясним,7225 представим в виде суммы 7000 и выделенного квадрата 225. Затем к числу сотен прибавить квадратный корень из 225, равный 15.

Получим ответ 85.

Этот способ нахождения очень интересен и в какой – то мере оригинален, но в ходе моего исследования встретился только один раз в работе пермского преподавател.

Возможно, он мало изучен или имеет какие – то исключения.

Он достаточно сложен в запоминании из – за двойственности алгоритма и применим только для четырёхзначных чисел точных корней, но я проработал множество примеров и убедился в его правильности. Кроме всего этот способ доступен тем, кто уже запомнил наизусть квадраты чисел от 11 до 29, ведь без их знания он будет бесполезен.

Глава 6. Канадский метод

√ X = √ S + (X - S) / (2 √ S), гдеX - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Давайте попробуем извлечь квадратный корень из 75


√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

При детальном изучении этого метода легко можно доказать его сходство с вавилонским и поспорить за авторские права изобретения этой формулы, если такие есть в действительности. Метод несложный и удобный.

Глава 7. Метод подбора угадыванием

Этот метод предлагают английские студенты математического колледжа Лондона, но каждый в своей жизни хоть раз непроизвольно пользовался этим методом. Он основан на подборе разных значений квадратов близких чисел путём сужения области поиска. Овладеть этим способом может каждый, но вот пользоваться вряд ли, потому что он требует многократного вычисления произведения столбиком не всегда правильно угаданных чисел. Этот способ проигрывает и в красоте решения, и по времени. Алгоритм прост:

Предположим, вы хотите извлечь квадратный корень из 75.

Так как 8 2 = 64 и 9 2 = 81, вы знаете, ответ находится где-то между ними.

Попробуйте возвести 8,5 2 и вы получите 72,25 (слишком мало)

Теперь попробуйте 8,6 2 и вы получите 73,96 (слишком небольшой, но все ближе)

Теперь попробуйте 8,7 2 и вы получите 75,69 (слишком большая)

Теперь вы знаете, ответ находится между 8,6 и 8,7

Попробуйте возвести 8,65 2 и вы получите 74,8225 (слишком мало)

Теперь попробуйте 8,66 2 ... и так далее.

Продолжайте, пока не получите ответ достаточно точный для вас.

Глава 8. Метод вычетов нечётного числа

Многие знают метод извлечения квадратного корня разложением числа на простые множители. В своей работе представлю ещё один способ, с помощью которого можно узнать целую часть квадратного корня числа. Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

Общее количество вычитаний = 11, поэтому √121 = 11.

Еще пример: найдём √529

Решение: 1)_529

2)_528

3)_525

4)_520

5)_513

6)_504

7)_493

8)_480

9)_465

10)_448

11)_429

12)_408

13)_385

14)_360

15)_333

16)_304

17)_273

18)_240

19)_205

20)_168

21)_129

22)_88

23)_45

Ответ: √529 = 23

Ученые называют этот метод арифметическим извлечением квадратного корня, а за глаза «методом черепахи» из-за его медлительности.
Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня. Попробуйте извлечь квадратный корень из числа, например, 5963364 этим способом и вы поймёте, что он «работает», безусловно, без погрешностей для точных корней, но очень - очень длинный в решёнии.

Заключение

Описанные в работе методы извлечения корней встречаются во многих источниках. Тем не менее, разобраться в них оказалось для меня непростой задачей, что вызвало немалый интерес. Представленные алгоритмы позволят всем, кто заинтересуется данной темой, быстрее овладеть навыками вычисления квадратного корня, их можно использовать при проверке своего решения и не зависеть от калькулятора.

В результате проведённого исследования я пришел к выводу: различные способы извлечения квадратного корня без калькулятора необходимы в школьном курсе математики, чтобы развивать навыки вычислений.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней.

Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами (Приложение1).

Литература и сайты Интернета:

  1. И.Н. Сергеев, С.Н. Олехник, С.Б.Гашков «Примени математику». – М.: Наука, 1990
  2. Керимов З., «Как найти целый корень?» Научно-популярный физико-математический журнал "Квант" №2, 1980
  3. Петраков И.С. «математические кружки в 8-10 классах»; Книга для учителя.

–М.:Просвещение,1987

  1. Тихонов А.Н., Костомаров Д.П. «Рассказы о прикладной математики».- М.: Наука. Главная редакция физико- математической литературы, 1979
  2. Ткачева М.В. Домашняя математика. Книга для учащихся 8 класса учебных заведений. – Москва, Просвещение, 1994г.
  3. Жохов В.И., Погодин В.Н. Справочные таблицы по математике.-М.: ООО «Издательство «РОСМЭН-ПРЕСС», 2004.-120 с.
  4. http://translate.google.ru/translate
  5. http://www.murderousmaths.co.uk/books/sqroot.htm
  6. http://ru.wikipedia.ord /wiki /teorema/

Добрый день, уважаемые гости!

Меня зовут Лев Соколов, я учусь в 8 классе в вечерней школе.

Представляю вашему вниманию работу на тему: « Извлечение квадратных корней из больших чисел без калькулятора».

При изучении темы квадратные корни в этом учебном году, меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора и я решил изучить его глубже, так как на следующий год мне предстоит сдавать экзамен по математике.

Цель моей работы: найти и показать способы извлечения квадратных корней без калькулятора

Для достижения цели я решал следующие задачи:

1. Изучить литературу по данному вопросу.

2. Рассмотреть особенности каждого найденного способа и его алгоритм.

3. Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов.

4.Создать мини-книжечку по самым интересным алгоритмам.

Объектом моего исследования стали квадратные корни.

Предмет исследования: способы извлечения квадратных корней без калькулятора.

Методы исследования:

1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.

2. Сравнение и анализ найденных способов.

Я нашел и изучил 8 способов извлечения квадратных корней без калькулятора и отработал их на практике. Название найденных способов приведены на слайде.

Я остановлюсь на тех из них, которые мне понравились.

Покажу на примере, как можно способом разложения на простые множители извлечь квадратный корень из числа 3025.

Основной недостаток этого способа - он занимает много времени.

С помощью формулы Древнего Вавилона я извлеку квадратный корень из этого же числа 3025.

Способ удобен только для малых чисел.

Из этого же числа 3025 извлекаем квадратный корень уголком.

На мой взгляд, это самый универсальный способ, он применим к любым числам.

В современной науке известно много способов извлечения квадратного корня без калькулятора, но я изучил не все.

Практическая значимость моей работы: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Результаты моей работы могут успешно применяться на уроках математики, физики и других предметах, где требуется извлечение корней без калькулятора.

Спасибо за внимание!

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Извлечение квадратных корней из больших чисел без калькулятора Исполнитель: Лев Соколов, МКОУ « Тугулымская В(С)ОШ»,8 класс Руководитель: Сидорова Татьяна Николаевна I категория, учитель математики р.п. Тугулым

Правильному применению методов можно научиться, применяя и на разнообразных примерах. Г. Цейтен Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора. Задачи: - Изучить литературу по данному вопросу. - Рассмотреть особенности каждого найденного способа и его алгоритм. - Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов. - Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: квадратные корни Предмет исследования: способы извлечения квадратных корней без калькулятора. Методы исследования: Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора. Сравнение найденных способов. Анализ полученных способов.

Способы извлечения квадратного корня: 1. Способ разложения на простые множители 2. Извлечение квадратного корня уголком 3. Способ использования таблицы квадратов двузначных чисел 4. Формула Древнего Вавилона 5. Способ отбрасывания полного квадрата 6. Канадский метод 7. Метод подбора угадыванием 8. Метод вычетов нечётного числа

Способ разложения на простые множители Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения. 3136│2 7056│2 209764│2 1568│2 3528│2 104882│2 784│2 1764│2 52441│229 392│2 882│2 229│229 196│2 441│3 98│2 147│3 √209764 = √2∙2∙52441 = 49│7 49│7 = √2²∙229² = 458. 7│7 7│7 √3136 = √ 2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56. √7056 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84. Не всегда легко можно разложить, чаще до конца не извлекается, занимает много времени.

Формула Древнего Вавилона (Вавилонский метод) Алгоритм извлечения квадратного корня древневавилонским способом. 1 . Представить число с в виде суммы а ² + b , где а ² ближайший к числу с точный квадрат натурального числа а (а ² ≈ с); 2. Приближенное значение корня вычисляется по формуле: Результат извлечения корня с помощью калькулятора равен 5,292.

Извлечение квадратного корня уголком Способ почти универсальный, так как применим к любым числам, но составление ребуса (угадывание цифры на конце числа) требует логики и хороших вычислительных навыков столбиком.

Алгоритм извлечения квадратного корня уголком 1. Разбиваем число (5963364) на пары справа налево (5`96`33`64) 2. Извлекаем квадратный корень из первой слева группы (- число 2). Так мы получаем первую цифру числа. 3. Находим квадрат первой цифры (2 2 =4). 4. Находим разность первой группы и квадрата первой цифры (5-4=1). 5.Сносим следующие две цифры (получили число 196). 6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4). 7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &. 8. Находим разность (196-176=20). 9. Сносим следующую группу (получаем число 2033). 10. Удваиваем число 24, получаем 48. 11. 48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа. Далее процесс повторяется.

Метод вычетов нечётного числа (арифметический способ) Алгоритм извлечения квадратного корня: Вычитать нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитать количество выполненных действий – это число есть целаячасть числа извлекаемого квадратного корня. Пример 1: вычислить 1. 9 − 1 = 8; 8 − 3 = 5; 5 − 5 = 0. 2. Выполнено 3 действия

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0 общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6. 121 – 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0 Общее количество вычитаний = 11, поэтому квадратный корень из 121 = 11. 5963364 = ??? Российские учёные «за глаза» называют его «методом черепахи» из-за его медлительности. Он неудобен для больших чисел.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней. Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Спасибо за внимание!

Предварительный просмотр:

При решении некоторых задач потребуется извлечь квадратный корень из крупного числа. Как это сделать?

Метод вычетов нечётного числа.

Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

121 - 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0

Общее количество вычитаний = 11, поэтому √121 = 11.

Канадский метод.

Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность – не более двух – трёх знаков после запятой. Вот их формула:

√ X = √ S + (X - S) / (2 √ S), где X - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Пример. Извлечь квадратный корень из 75.

X = 75, S = 81. Это означает, что √ S = 9.

Просчитаем по этой формуле √75: √ 75 = 9 + (75 - 81) / (2∙ 9)
√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

Способ извлечения квадратного корня уголком.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа.


Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81.

Метод подбора.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √ 676 = 26.

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Вавилонский метод.

Шаг №1. Представить число х в виде суммы: х=а 2 + b, где а 2 ближайший к числу х точный квадрат натурального числа а.

Шаг №2. Использовать формулу:

Пример. Вычислить .

Арифметический метод.

Вычитаем из числа все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитав количество выполненных действий, определяем, целую часть квадратного корня из числа.

Пример. Вычислить целую часть числа .

Решение. 12 - 1 = 11; 11 - 3 = 8; 8 - 5 = 3; 3 3 - целая часть числа . Итак, .

Метод (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего .

Указанный способ позволяет извлекать квадратный корень из большого числа с любой точностью, правда с существенным недостатком: громоздкость вычислений.

Метод оценки.

Шаг №1. Выяснить диапазон, в котором лежит исходный корень (100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000).

Шаг №2 . По последней цифре определить на какую цифру заканчивается искомое число.

Цифра единиц числа х

Цифра единиц числа х 2

Шаг №3. Возвести в квадрат предполагаемые числа и определить из них искомое число.

Пример 1. Вычислить .

Решение. 2500 50 2 2 50

= *2 или = *8.

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58
2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Следовательно, = 58.

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Один из простейших способов вычисления корней заключается в использовании специальной таблицы . Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах - значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня - это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки - 1, по вертикали находим единицы - 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители . Простые множители - это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона . Его суть заключается в использовании приближённой формулы:

√R = √a + (R - a) / 2√a,

где R - число, корень которого нужно вычислить, a - ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен - 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 - 121) / 2 ∙ √121 = 11 - 10 / 22 ≈ 10,55.

Теперь проверим точность метода :

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 - 111,3025) / 2 ∙ √111,3025 = 10,55 - 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора .

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 - первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3-6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 - 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью . Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д.) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

    Вычисление (или извлечение) квадратного корня можно производить несколькими способами, но все они не сказать что уж очень просты. Проще, конечно, прибегнуть к помощи калькулятора. Но если такой возможности нет (или вы хотите понять суть квадратного корня), могу посоветовать пойти следующим путем, его алгоритм таков:

    Если на такие длительные вычисления у вас нет сил, желания или терпения, можно прибегнуть к помощи грубого подбора, его плюс в том, что он невероятно быстрый и при должной смекалке точный. Пример:

    Когда я учился в школе (в начале 60-х годов), нас учили извлекать квадратный корень из любого числа. Методика несложная, внешне похожа на деление столбиком, но излагать е здесь, это потребуется полчаса времени и 4-5 тысяч знаков текста. Но зачем это Вам? У вас есть телефон или иной гаджет, в нм есть калькулятор. Калькулятор есть и в любом компьютере. Лично я предпочитаю производить такого рода вычисления в Excel.

    Зачастую в школе требуется находить квадратные корни разных чисел. Но если вот мы привыкли пользоваться постоянно для этого калькулятором, то на экзаменах такой возможности не будет, поэтому нужно учиться искать корень без помощи калькулятора. А сделать-то это в принципе возможно.

    Алгоритм таков:

    Смотрите сначала на последнюю цифру вашего числа:

    Например,

    Теперь требуется определить примерно значение для корня из самой левой группы

    В случае когда число имеет больше двух групп, то находить корень надо так:

    А вот следующая циферка должна быть именно наибольшей, подобрать е надо так:

    Теперь надо образовать новое число А посредством добавления к остатку, который был получен выше, следующую группу.

    В наших примерах:

  • Столбиком наджней, а когда нужно больше пятнадцати знаков, то компьютеры и телефоны с калькуляторами чаще всего отдыхают. Осталось проверить, займт ли описание методики 4-5 тыс. знаков.

    Берм любое число, от запятой отсчитываем пары цифр вправо и влево

    Например, 1234567890,098765432100

    Пара цифр - это как бы двузначное число. Корень из двузначного - однозначное. Подбираем однозначное, квадрат которого меньше первой пары цифр. В нашем случае это 3.

    Как при делении столбиком, под первой парой выписываем этот квадрат и из первой пары вычитаем. Результат сносим под подчерк. 12 - 9 = 3. Добавляем к этой разнице вторую пару цифр (будет 334). Слева от числа берм удвоенное значение той части результата, которую уже нашли о дополняем цифрой (у нас 2*6=6), такой, чтобы при умножении на не полученное число не превосходило число со второй парой цифр. Получаем, что найденная цифра - пятрка. Снова находим разность (9), сносим следующую пару цифр получая 956, снова выписываем удвоенную часть результата (70), снова е дополняем нужной цифрой и так далее до упора. Или до нужной точности вычислений.

    Во-первых для того что бы вычислить квадратный корень надо хорошо знать таблицу умножения. Самые простые примеры - это 25 (5 на 5 = 25) и так далее. Если же брать числа посложнее, то можно использовать данную таблицу, где по горизонтали единицы, а по вертикале десятки.

    Есть хороший способ как найти корень из числа без помощи калькуляторов. Для этого вам понадобится линейка и циркуль. Суть в том, что вы находите на линейке значение, которое у вас под корнем. Например, ставите отметку возле 9. Ваша задача - поделить это число на равное количество отрезков, то есть на два линии по 4,5 см, а на ровный отрезок. Несложно догадаться, что в итоге получится 3 отрезка по 3 сантиметра.

    Способ нелегкий и для больших чисел не подойдет, но зато считается без калькулятора.

    без помощи калькулятора способу извлечения корня квадратного учили в советские времена в школе в 8-м классе.

    Для этого надо разбить многозначное число справа налево на грани по 2 цифры :

    Первая цифра корня это целый корень из левой грани, в данном случае, 5.

    Вычитаем 5 в квадрате из 31, 31-25=6 и к шестерке приписываем следующую грань, имеем 678.

    Следующая цифра х подбирается к удвоенной пятерке так, чтобы

    10х*х было максимально большим, но меньшим чем 678.

    х=6, поскольку 106*6 = 636,

    теперь вычисляем 678 - 636 = 42 и добавляем следующую грань 92, имеем 4292.

    Снова ищем максимальный х, такой что 112х*х lt; 4292.

    Ответ: корень равен 563

    Так можно продолжать сколько требуется.

    В некоторых случаях можно попытаться разложить подкоренное число на два или несколько квадратных множителей.

    Также полезно запомнить таблицу (или хотя бы какую-то ее часть) - квадраты натуральных чисел от 10 до 99.

    Предлагаю изобретенный мною вариант извлечения квадратного корня в столбик. Он отличается от общеизвестного, исключением подбора чисел. Но как выяснил позже, данный метод уже существовал за много лет до моего рождения. Описал его в своей книге Всеобщая арифметика или книга об арифметических синтезе и анализе великий Исаак Ньютон. Так что здесь излагаю свое видение и обоснование алгоритма метода по Ньютону. Запоминать алгоритм не стоит. Можно просто при необходимости пользоваться схемой на рисунке в качестве наглядного пособия.

    С помощью таблиц можно не вычислить, а найти, корни квадратные толь из чисел которые есть в таблицах. Проще всего вычислять корни не только квадратные, но и других степеней, методом последовательных приближений. Например вычислим корень квадратный из 10739, заменяем три последние цифры нулями и извлечем корень из 10000 получим 100 с недостатком, поэтому берем число 102 возводим его в квадрат, получаем 10404, что тоже меньше заданного, берем 103*103=10609 опять с недостатком, берем 103,5*103,5=10712,25, берем ещ больше 103,6*103,6=10732, берем 103,7*103,7=10753,69, что уже с избытком. Можно принять корень из 10739 примерно равны 103,6. Более точно 10739=103,629... . . Аналогично вычисляем корень кубический сначала из 10000 получаем примерно 25*25*25=15625, что с избытком, берем 22*22*22=10,648, берем чуть больше 22,06*22,06*22,06=10735, что очень близко к заданному.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.