Генетическая (генная) инженерия. Доклад: Генная инженерия - настоящее и будущее

Что такое генная инженерия?

Генная инженерия это новая, революционная технология, при помощи которой ученые могут извлекать гены из одного организма и внедрять их в любой другой. Гены это программа жизни - это биологические конструкции, из которых состоит ДНK и которые обуславливают специфические характеристики, присущие тому или другому живому организму. Пересадка генов изменяет программу организма - получателя и его клетки начинают производить различные вещества, которые, в свою очередь, создают новые характеристики внутри этого организма.
При помощи этого метода исследователи могут менять особые свойства и характеристики в нужном им направлении, например: они могут вывести сорт томатов с более длительным сроком хранения или сорт соевых бобов, устойчивых к воздействию гербицидов. Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные.
С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов.


Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени. Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК.
Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Проблемы генной инженерии

Возможности одного из самых важных порождений науки ХХ века - генной инженерии - давно будоражат воображение человечества, поскольку она подобралась к самому важному в телесной оболочке человека, к законам жизнедеятельности его организма. Но если еще лет пятнадцать назад результаты работы биотехнологов связывались в первую очередь с выведением новых сортов моркови или новой породы молочных коров, то уже пару лет назад оказалось возможным пообщаться с маленькой овечкой Долли, клонированной шотландскими биологами, а в прошлом году было оглашено о создании первой более-менее общей карты генома человека. На фоне достижений в сфере биологии уходят на второй план хиты предыдущих сезонов - новые информационные технологии. Мало кого сейчас интересует вопрос, когда человек сможет свободно ходить по Марсу, намного актуальней споры о том, когда можно будет клонировать человека и, соответственно, как этого не допустить - этакий реверанс в сторону морали и этики.

Генная инженерия - враг или друг? Историческая перспектива...

Историческая перспектива

Как известно жизнь зародилась на Земле приблизительно 4,6 миллиарда лет назад, и, какие бы формы она не принимала, за жизненные проявления каждого организма отвечало одно и то же вещество - дезоксирибонуклеиновая кислота (она же - ДНК). ДНК, закрепленная в генах, определяла, и все еще определяет (а в будущем, видимо, под чутким руководством человека) метаболическую активность клеток, необходимую для их выживания, а это и есть жизнь в самом простом определении. Собственно, термин "гены" не использовался до начала прошлого века, хотя исследования того, как они функционируют начались еще в ХIX веке. Австрийский монах Грегор Мендель в течение многих лет наблюдал за потомством растений гороха, который он выращивал на монастырсом огороде. Фиксируя внешние особенности - высоту стебля, окраску лепестков, форму горошин, он смог теоретически предположить существование неких "факторов", которые наследуются потомством от родительских растений. Как и Колумб, Мендель умер, так и не узнав о том, что же ему удалось открыть. С самого начала ХХ века разразился бум, связанный с исследованиями строения клеток. Биологам удалось установить, какие функции выполняет клеточное ядро, раскрыть загадку природы хромосом. Самым важным оказалось то, что стала понятной природа трансляция молекул ДНК: во время меозиса, предшествующего появлению яйцеклеток и сперматозоидов, количество хромосом, в которых и содержится ДНК, уменьшается в два раза, что впоследствии, при слиянии половых клеток, позволит объединить их ядра в единое целое - дать начало новому организму с совершенно уникальным набором генов. В 1953 году, наконец, удалось вычленить двойную спиральную структуру ДНК, которую сейчас в лицо знает каждый школьник. Теперь ДНК признана универсальным биологическим языком, который объединят все обитающие на Земле организмы: человека и бактерии, грибы и растения. Однако, ХХ век - это век не только фундаментальных открытий, но и век инженерии - практического применения этих самых открытий. Поэтому наряду с продолжающимися исследованиями про то, как "все это в целом устроено", семимильными шагами развивались различные отрасли генной инженерии и разнообразные биотехнологии. С самого начала инженерная мысль такого рода касалась в первую очередь того, каким образом можно использовать одни живые организмы, обладающие определенным геном, для того, чтобы улучшить другие - речь шла о растениях или животных. В семидесятых годах ученые научились вырезать участки ДНК одного организма и пересаживать его в другой, что совершило небольшой переворот в производстве разнообразных лекарств - инсулина, гормона человеческого роста и т.д. Не один год ведутся попытки осуществить так называемую терапию человеческими генами - людям, у которых в генном наборе не хватает определенных компонентов или они в какой-то мере неполноценны, пересаживаются гены других людей. Достаточно обширно знания, полученные благодаря генетике, используются в сфере воспроизводства людей. Многие знают, что при определенных условиях вполне реально выращивать детей "из пробирки", а при некоторых ситуациях женского бесплодия - обращаться за помощью к суррогатным матерям. Генетически измененные растения (морозоустойчивые злаки, трансгенный картофель, быстросозревающие помидоры и т.д.) уже появляются на обеденных столах, хотя пока особого ажиотажа не вызывают.

Генная инженерия - враг или друг? Возможности генной инженерии...

Возможности генной инженерии, проект "Геном человека"

Естественно успешные манипуляции с генами растений и животных не могли не привести к достаточно скользкому вопросу: а что же человек? Если возможно улучшать животных, то почему бы не заняться человеком. Однако для начала необходимо все-таки разобраться с генным набором человека. Так, в 1990 году появилась инициатива по картированию человеческих хромосом, состоящих из 26-30 тысяч генов. Проект получил простое название "Геном человека" и ориентировочно должен был представить полную карту генома где-то к 2005 году. В проект входят исследовательские группы из разных стран, а с конца 90-х гг. создаются специальные компании, основной задачей которых является облегчение и ускорение коммуникации между такими группами. К началу 2001 года уже полностью картированы 2 хромосомы: 21 и 22.

Однако основной сенсацией прошлого года все таки стало открытие группой Крега Вентера общей карты генома человека. Ученые говорят, что если сравнивать эту карту с обычными, то вряд ли бы по ней можно было бы попасть в магазин на соседней улице, однако в любом случае сам факт ее существования говорит о начале эпохи патентирования генов, а это, в свою очередь, поднимает множество вопросов уже не биологического толка, а этического и правового. Хотя ученые и заявляют, что основная цель картирования генома - это необходимость разобраться в том, как работает человеческое тело, чтобы эффективнее противостоять разнообразным заболеваниям, а еще такие знания могут значительно облегчить создание новых медицинский препаратов, все же становится очевидным необходимость как правового регулирования вопроса: как и что можно делать с человеческим телом, так и ответа на вопрос: где надо остановиться? Может ли человек уподобиться Творцу и сам заняться созданием новых существ? Формирование карты генома человека часто сравнивают с такими революционными событиями, как высадка человека на Луну, например. Однако сейчас наблюдается одно существенное различие: если космические программы - это одна из задач государства, то группы - участники проекта, как правило, имеют частное финансирование, следовательно, авторские права на их разработки будут иметь негосударственные компании. А что они будут с ними делать?

Представим себе, что в недалеком будущем, карта будет составлена достаточно точно, и каждый человек может быть, таким образом, описан. Возникает вопрос - кто будет владеть доступом к этой информации? В какой мере человек сможет сохранять в неприкосновенности самую "интимную" информацию о себе? Не будут ли работодатели отказывать в приеме на работу человеку, у которого в генах заложена предрасположенность к какому-либо виду рака? Возможно ли будет медицинское страхование в ситуации, когда геном каждого отдельного человека будет представлять информацию о всех потенциальных болезнях? Тони Блэр заявил о необходимости составления генетических портретов преступников. И вроде бы ученые готовы работать над тем, чтобы открыть специальные гены, отвечающие за девиантное поведение людей. Однако многих специалистов уже сейчас пугает перспектива того, что в недалеком будущем общество переложит решение разнообразных проблем - преступности, бедности, расизма и т.д. - на генетиков и генную инженерию: "мол, все дело в генах, если что-то не в порядке, то это не забота общества, а генетическая предрасположенность отдельных людей". Ведь, в общем-то многие забывают, что только совсем некоторые редкие болезни обусловлены исключительно набором генов, а те заболевания, которые мы обычно называем генетическими - рак, сердечно-сосудистые нарушения - только отчасти имеют генетическую природу, во многом вероятность их появления в первую очередь зависит от тех шагов, которые предпринимает сам человек и общество, а поэтому не может быть ничего страшнее социума, умывающего руки в такой ситуации. Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов.

Этот процесс состоит из нескольких этапов:
1. Рестрикция - разрезание ДНК, например, человека на фрагменты.
2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.
3. Трансформация - введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.
4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции. Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом.

Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию. Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия. Ни один ученый, действительно твердо стоящий на платформе научной объективности, никогда не скажет, что при помощи чего-то можно излечить абсолютно все или что что-то "абсолютно безопасно", особенно, если это касается генной инженерии, которая манипулирует отдельно взятыми уровнями Природного Закона, игнорируя при этом его целостность. Как мы уже видели на примере ядерных исследований, энергия, высвобождающаяся в результате таких манипуляций, может быть огромной, но и возможная опасность, также огромна. Когда ядерная технология находилась на стадии разработки, никто не мог предположить, что всего через несколько лет человечество окажется под угрозой многократного уничтожения, которое в состоянии обеспечить обе противоборствующие силы в равной степени. И когда ядерная энергия начала использоваться для производства электричества, также никто не знал, что в результате мы получим миллионы тонн радиоактивных отходов, которые будут сохранять свою токсичность еще десятки тысяч лет. Никто не знал ничего об этом, но мы все же сделали прыжок вслепую, создав тем самым серьезные проблемы для самих себя и для будущих поколений. Поэтому мы должны быть очень осторожны с использованием генной инженерии, которая работает на том уровне, где содержится полная информация о самой глубинной структуре жизни.

Понадобились миллионы лет для того, чтобы жизнь на Земле развилась до теперешнего состояния высоко сбалансированной, динамичной экосистемы со всем тем неисчислимым многообразием форм жизни, известным нам сегодня. Сейчас мы живем в такое время, когда через поколение, а может и раньше, наиболее важные зерновые культуры претерпят радикальные изменения в результате вмешательства генной инженерии и эти изменения серьезно повредят экосистеме в целом, а также подвергнут опасности все человечество. До тех пор пока не доказана безопасность продукции, полученной в результате генной инженерии, этот вопрос всегда будет оставаться под сомнением - и это та точка зрения, которую отстаивает Партия Природного Закона. Необходимо, чтобы применение генной инженерии сопровождалось строгим научным контролем безопасности. Почти с полной определенностью можно сказать, что генная инженерия приведет к химическому загрязнению окружающей среды. Выведение сортов зерновых с повышенной устойчивостью к гербицидов, приведет к тому, что фермеры будут вынуждены применять для борьбы с сорняками в трое больше химических средств защиты, чем ранее, а это в свою очередь увеличит загрязнение почвы и грунтовых вод Америки. Например, химическая компания "Монсанто" уже вывела сорта кукурузы, сои и сахарной свеклы, устойчивые к гербициду "Раундап", выпускаемому этой же компанией. Промышленные чиновники неоднократно заявляли, что "Раундап" безопасен для живых организмов и быстро нейтрализуется окружающей средой. Однако, предварительные исследования, проведенные в Дании, показали, что "Раундап" остается в почве в течение трех лет (и следовательно, может впитываться последующими сельскохозяйственными культурами, посаженными на этом месте) были проведены и другие научные работы, которые выявили, что применение данного гербицида вызывает токсические реакции у фермеров, нарушают функцию воспроизведения потомства у млекопитающих, наносит вред рыбам, дождивым червям и полезным насекомым.

Сторонники генной инженерии часто заявляют, что эта технология является просто более усовершенствованным видом скрещивания, которое применялось тысячелетиями для улучшения породы культурных растений и домашних животных. Но на самом деле, вмешательство генной инженерии проникает сквозь природные репродуктивные барьеры между видами, благодаря которым поддерживается равновесие и целостность жизни на Земле. Традиционная система выведения новых пород и сортов может скрещивать одну породу свиньи с другой или лошадь с ослом, или два сорта томатов, но она не может скрестить томаты с рыбой - природа не допускает такого смешения генов. А при помощи генной инженерии ученые уже соединили гены рыб и томатов - и эти томаты, никак не помеченные, спокойно лежат себе сейчас на наших прилавках. Более того, фактически все зерновые и бобовые культуры, овощи и фрукты уже претерпели вмешательство генной инженерии, а пищевая промышленность намерена ввести все эти продукты в продажу в течение 5-8 предстоящих лет. Pioneer Hybrid International - крупнейшая в мире компания по выпуску семян, используя генную инженерию, вывела новый сорт сои, внедряя в нее ген бразильского ореха, с целью повышения содержания протеина в сое. Но вживленный компонент бразильского ореха в сое вызвал аллергическую реакцию у большинства потребителей, и тогда Pioneer свернул проект. А когда японская компания "Шова Денко" путем генной инженерии изменила структуру естественной бактерии для более эффективного производства пищевой добавки под названием "Триптофан", эти генетические манипуляции привели к тому, что эта бактерия, находясь в составе триптофана, стала производить высоко токсичное вещество, которое было обнаружено только после того, как продукт был выпущен на рынок в 1989 году. В результате: 5000 человек заболело, 1500 стало пожизненными инвалидами, и 37 скончалось. Исследователи с очень большим воодушевлением взялись использовать генную инженерию для выведения более урожайных сортов пшеницы, создания более питательных продуктов питания, ликвидации определенных болезней, надеясь таким образом улучшить жизнь человека на Земле. Но, в действительности, несмотря на то, что гены могут быть извлечены и правильно скрещены в экспериментальной колбе, в жизни очень трудно прогнозировать последствия вживления генов в чужой организм.

Такие операции могут стать причиной мутаций, в результате которых подавляется деятельность естественных генов организма. Внедренные гены могут также вызвать неожиданные побочные эффекты: генетически сфабрикованная пища может, к примеру, содержать токсины и аллергены или иметь пониженную питательность, и в результате потребители заболевают или даже, как уже случалось, умирают. Кроме того, организмы, выведенные при помощи генной инженерии, способны самостоятельно размножаться и скрещиваться с природными, не претерпевшими генное вмешательство популяциями, вызывая при этом необратимые биологические изменения во всей экосистеме Земли. Можно с полной уверенностью сказать, что генная инженерия - это безусловно перспективная область, которая в нашей стране, к сожалению не финансируется и не имеет своего производителя. Россия, безусловно занимаемся разработками в этой области, но вынуждена продавать свои изобретения за рубеж. Нашими учеными был изобретен интерферон человека, аспартам, паутина. Важно то, что создавая препарат, он не выходит в применение до тех пор, пока его строение не будет приближено к геному человека. В этом случае препарат абсолютно безвреден. При выработке аспартама, смешиваются две аминокислоты, но катализатором процесса являются микроорганизмы. Задача генетика провести разработку так, чтобы очистка препарата от микроорганизмов прошла 100% проверку. В этом заключается качество работы. Мы отвечаем за качество и профессиональная точка зрения такова, что генная инженерия в разумных пределах полезна для человечества.

Генная инженерия - враг или друг? Опасность генной инженерии...

Научные факты опасности генной инженерии

1. Генная инженерия в корне отличается от выведения новых сортов и пород. Исскуственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.

2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

3. В результате искуственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худщем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях ещё очень неполны.

4. Не существует совершенно надёжных методов проверки на безвредность. Более 10% серьёзных побочных эффектов новых лекарств не возможно выявить несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств.

5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.

6. Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы.

7. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. Не доказано ещё, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

8. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.

9. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трёх процентов ДНК. рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьёзные непредсказуемые проблемы и расстройства.

10. Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.

11 Июля 2008

Генная инженерия (генетическая инженерия) – совокупность методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению генов из организма, осуществлению манипуляций с генами и введению их в другие организмы .

Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология, генетика. Суть новой технологии заключается в направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.

С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д.

Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.

Историческая справка

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. В 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали E.coli, ее вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Г.Смит установил, что полученный из бактерий очищенный фермент HindII сохраняет способность разрезать молекулы нуклеиновых кислот (нуклеазная активность), характерную для живых бактерий. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии.

Таким образом, к началу 70-х годов были сформулированы основные принципы функционирования нуклеиновых кислот и белков в живом организме и созданы теоретические предпосылки генной инженерии

Академик А.А. Баев был первым в нашей стране ученым, который поверил в перспективность генной инженерии и возглавил исследования в этой области. Генетическая инженерия (по его определению) – конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе – создание искусственных генетических программ.

Задачи и методы генной инженерии

Хорошо известно, что традиционная селекция имеет целый ряд ограничений, которые препятствуют получению новых пород животных, сортов растений или рас практически ценных микроорганизмов:

1. отсутствие рекомбинации у неродственных видов. Между видами существуют жесткие барьеры, затрудняющие естественную рекомбинацию.
2. невозможность управлять процессом рекомбинации в организме извне. Отсутствие гомологии между хромосомами приводит к неспособности сближаться и обмениваться отдельными участками (и генами) в процессе образования половых клеток. В результате становится невозможным перенос нужных генов и обеспечение оптимального сочетания в новом организме генов, полученных от разных родительских форм;
3. невозможность точно задать признаки и свойства потомства, т.к. процесс рекомбинации – статистический.

Природные механизмы, стоящие на страже чистоты и стабильности генома организма, практически невозможно преодолеть методами классической селекции.

Технология получения генетически модифицированных организмов (ГМО) принципиально решает вопросы преодоления всех естественных и межвидовых рекомбинационных и репродуктивных барьеров. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Генная инженерия позволяет оперировать любыми генами, даже синтезированными искусственно или принадлежащими не родственным организмам, переносить их от одного вида к другому, комбинировать в произвольном порядке.

Технология включает несколько этапов создания ГМО:

1. Получение изолированного гена.
2. Введение гена в вектор для встраивания в организм.
3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент.
4. Молекулярное клонирование.
5. Отбор ГМО.

Первый этап – синтез, выделение и идентификация целевых фрагментов ДНК или РНК и регуляторных элементов очень хорошо разработан и автоматизирован. Изолированный ген может быть также получен из фаговой библиотеки.

Второй этап – создание in vitro (в пробирке) генетической конструкции (трансгена), которая содержит один или несколько фрагментов ДНК (кодирующих последовательность аминокислот белков) в совокупности с регуляторными элементами (последние обеспечивают активность трансгенов в организме). Далее трансгены встраивают в ДНК вектора для клонирования, используя инструментарий генной инженерии – рестриктазы и лигазы. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит были удостоены Нобелевской премии (1978 г.). Как правило, в качестве вектора используют плазмиды – небольшие кольцевые молекулы ДНК бактериального происхождения.

Следующий этап – собственно «генетическая модификация» (трансформация), т.е. перенос конструкции «вектор – встроенная ДНК» в отдельные живые клетки. Введение готового гена в наследственный аппарат клеток растений и животных представляет собой сложную задачу, которая была решена после изучения особенностей внедрения чужеродной ДНК (вируса или бактерии) в генетический аппарат клетки. Процесс трансфекции был использован как принцип введения генетического материала в клетку.

Если трансформация прошла успешно, то после эффективной репликации из одной трансформированной клетки возникает множество дочерних клеток, содержащих искусственно созданную генетическую конструкцию. Основой для появления у организма нового признака служит биосинтез новых для организма белков – продуктов трансгена, например, растений – устойчивости к засухе или насекомым-вредителям у ГМ растений.

Для одноклеточных организмов процесс генетической модификации ограничивается встраиванием рекомбинантной плазмиды с последующим отбором модифицированных потомков (клонов). Для высших многоклеточных организмов, например, растений, то обязательным является включение конструкции в ДНК хромосом или клеточных органелл (хлоропластов, митохондрий) с последующей регенерацией целого растения из отдельной изолированной клетки на питательных средах. В случае животных, клетки с измененным генотипом вводят в бластоциды суррогатной матери. Первые ГМ растения были получены в 1982 году учеными из Института растениеводства в Кельне и компании Monsanto.

Основные направления

Постгеномная эра в первой декаде XXI-ого века подняла на новый уровень развитие генной инженерии. Так называемый Кельнский Протокол «На пути к биоэкономике, основанной на знаниях» , определил биоэкономику как «преобразование знаний наук о жизни в новую, устойчивую, экологически эффективную и конкурентоспособную продукцию». Дорожная карта генной инженерии содержит целый ряд направлений: генотерапия, биоиндустрия, технологии, основанные на стволовых клетках животных, ГМ растения, ГМ животные и т.д.

Генетически модифицированные растения

Ввести чужеродную ДНК в растения можно различными способами.

Для двудольных растений существует естественный вектор для горизонтального переноса генов: плазмиды агробактерий. Что касается однодольных, то, хотя в последние годы достигнуты определенные успехи в их трансформации агробактериальными векторами, все же подобный путь трансформации встречает существенные затруднения.

Для трансформации устойчивых к агробактериям растений разработаны приемы прямого физического переноса ДНК в клетку они включают: бомбардировку микрочастицами или баллистический метод; электропорацию; обработку полиэтиленгликолем; перенос ДНК в составе липосом и др.

После проведения тем или иным способом трансформации растительной ткани ее помещают in vitro на специальную среду с фитогормонами, способствующую размножению клеток. Среда обычно содержит селективный агент, в отношении которого трансгенные, но не контрольные клетки приобретают устойчивость. Регенерация чаще всего проходит через стадию каллуса, после чего при правильном подборе сред начинается органогенез (побегообразование). Сформированные побеги переносят на среду укоренения, часто также содержащую селективный агент для более строгого отбора трансгенных особей.

Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растений (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.

После прохождения всех необходимых тестов на токсичность, аллергенность, мутагенность и т.д. первые трансгенные продукты появились в продаже в США в 1994 г. Это были томаты Flavr Savr с замедленным созреванием, созданные фирмой «Calgen», а также гербицид-устойчивая соя компании «Monsanto». Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.

В РФ возможность получения трансгенного картофеля методом бактериальной трансформации с использованием Agrobacterium tumefaciens была показана в 1990 г.

В настоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более 100 миллиардов долларов. Генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки.

В России под руководством академика К.Г. Скрябина (Центр «Биоинженерия» РАН) получены и охарактеризованы ГМ сорта картофеля Елизавета плюс и Луговской плюс, устойчивые к колорадскому жуку. По результатам проверки Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека на основании экспертного заключения ГУ НИИ питания РАМН данные сорта прошли государственную регистрацию, внесены в государственный реестр и разрешены для ввоза, изготовления и оборота на территории РФ.

Данные ГМ сорта картофеля принципиально отличается от обычных наличием в его геноме встроенного гена, определяющего 100%-ю защиту урожая от колорадского жука без использования каких-либо химических средств.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

Нынешний этап развития генетической инженерии растений получил название «метаболическая инженерия». При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие «лекарственные» белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.

Генетически модифицированные животные

Клетки животных существенно отличаются от бактериальных по своей способности поглощать чужеродную ДНК, поэтому методы и способы способы введения генов в эмбриональные клетки млекопитающих, мух и рыб остаются в центре внимания генных инженеров.

Наиболее изученное в генетическом отношении млекопитающее – мыши. Первый успех относится к 1980 году, когда Д. Гордон с сотрудниками продемонстрировал возможность введения и интеграции чужеродной ДНК в геном мышей. Интеграция была стабильной и сохранялась у потомства. Трансформацию производят микроинъекцией клонированных генов в один или оба пронуклеуса (ядра) только что эмбриона на стадии одной клетки (зиготы). Чаще выбирают мужской пронуклеус, привнесенный сперматозоидом, так как его размеры больше. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери, или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку.

Таким образом были инъецированы гены интерферона и инсулина человека, ген β-глобина кролика, ген тимидинкиназы вируса простого герпеса и кДНК вируса лейкемии мышей. Число молекул, вводимое за одну инъекцию, колеблется от 100 до 300 000, а их размер – от 5 до 50 кб. Выживает обычно 10 – 30% яйцеклеток, а доля мышей, родившихся из трансформированных яйцеклеток варьирует от нескольких до 40%. Таким образом, реальная эффективность составляет около 10%.

Таким методом получены генно-инженерные крысы, кролики, овцы, свиньи, козы, телята и другие млекопитающие. В нашей стране получены свиньи, несущие ген соматотропина. Они не отличались по темпам роста от нормальных животных, но изменение обмена веществ сказалось на содержании жира. У таких животных ингибировались процессы липогенеза и активировался синтез белка. К изменению обмена веществ приводило и встраивание генов инсулиноподобного фактора. ГМ свиньи были созданы для изучения цепочки биохимических превращений гормона, а побочным эффектом явилось укрепление иммунной системы.

Самая мощная белоксинтезирующая система находится в клетках молочной железы. Если поставить гены чужих белков под контроль казеинового промотора, то экспрессия этих генов будет мощной и стабильной, а белок будет накапливаться в молоке. С помощью животных-биореакторов (трансгенные коровы) уже получено молоко, в котором содержится человеческий белок лактоферрин. Этот белок планируется применять для профилактики гастроэнтерологических заболеваний у людей с низкой иммунорезистентностью: больные СПИДом, недоношенные младенцы, больные раком, прошедшие радиотерапию.

Важное направление трансгеноза – получение устойчивых к болезням животных. Ген интерферона, относящийся к защитным белкам, встраивали различным животным. Трансгенные мыши получили устойчивость – они не болели или болели мало, а вот у свиней такого эффекта не обнаружено.

Применение в научных исследованиях

Нокаут гена (gene knockout) – техника удаления одного или большего количества генов, что позволяет исследовать функции гена. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцист суррогатной матери. Сходным способом получают нокаут у растений и микроорганизмов.

Искусственная экспрессия – добавление в организм гена, которого у него ранее не было, также с целями изучения функции генов. Визуализация продуктов генов – используется для изучения локализации продукта гена. Замещение нормального гена на сконструрованный ген, слитый с репортёрным элементом, (например, с геном зелёного флуоресцентного белка) обеспечивает визуализацию продукта генной модификации.

Исследование механизма экспрессии. Небольшой участок ДНК, расположенный перед кодирующей областью (промотор) и служащий для связывания факторов транскрипции, вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP, катализирующий легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать экспрессию генов.

Биобезопасность генно-инженерной деятельности

Еще в 1975 г. ученые всего мира на Асиломарской конференции подняли важнейший вопрос: не окажет ли появление ГМО потенциально негативного воздействия на биологическое разнообразие? С этого момента одновременно с бурным развитием генной инженерии стало развиваться новое направление - биобезопасность. Главная ее задача - оценить не несет ли использование ГМО нежелательное воздействие на окружающую среду, здоровье человека и животных, а главная цель - открыть путь к использованию достижений современной биотехнологии, гарантируя при этом безопасность.

Стратегия биобезопасности основывается на научном исследовании особенностей ГМО, опыте обращения с ним, а также информации о его предполагаемом использовании и окружающей среде, в которую он будет интродуцирован. Совместными многолетними усилиями международных организаций (ЮНЕП, ВОЗ, ОЭСР), экспертов из разных стран, в т. ч. России, были разработаны базовые понятия и процедуры: биологическая безопасность, биологическая опасность, риск, оценка рисков. Только после того, как полный цикл проверок будет успешно осуществлен, готовится научное заключение о биобезопасности ГМО. В 2005 г. ВОЗ опубликовало доклад, согласно которому употребление зарегистрированных в качестве пищи ГМ растений также безопасно, как их традиционных аналогов.

Как обеспечивается биобезопасность в России? Началом включения России в мировую систему биобезопасности можно считать ратификацию «Конвенции о биоразнообразии» в 1995 году. С этого момента началось формирование национальной системы биобезопасности, отправной точкой которой явилось вступление в силу Федерального закона РФ «О государственном регулировании в области генно-инженерной деятельности» (1996 г.). ФЗ устанавливает основные понятия и принципы государственного регулирования и контроля всех видов работ с ГМО. ФЗ устанавливает уровни риска в зависимости от типа ГМО и вида работ, дает определения замкнутой и открытой систем, выпуска ГМО и т.д.

За прошедшие годы в России сформировалась одна из самых жестких систем регулирования. Неординарен тот факт, что система государственного регулирования ГМО стартовала превентивно, в 1996 году, до того, как реальные генно-инженерные организмы были заявлены для коммерциализации на территории России (первый ГМО – ГМ соя - была зарегистрирована для пищевого использования в 1999г.). Базовыми правовыми инструментами служат государственная регистрация генно-инженерно-модифицированных организмов, а также продукции, полученной из них или их содержащей, предназначенных для использования в качестве пищи и кормов.

Для понимания современной ситуации важен факт, что в течение 25 лет, прошедших с момента первого выхода ГМ растений на рынок, не было выявлено ни одного достоверного отрицательного воздействия их на окружающую среду и здоровье человека и животных ни в ходе испытаний, ни при коммерческом использовании. Только в одном из мировых источников – отчете авторитетного общества AGBIOS «Essential Biosafety» содержится более 1000 ссылок на исследования, доказывающие, что пища и корма, полученные из биотехнологических культур, настолько же безопасны, насколько безопасны и традиционные продукты. Однако на сегодняшний день в России отсутствует нормативно-правовая база, которая позволила бы осуществлять на территории нашей страны выпуск в окружающую среду ГМ растений, а также продукции, полученной из них или их содержащей. Как следствие – на 2010 год ни одно ГМ растение не выращивается на территории Российской Федерации в коммерческих целях.

По прогнозу, согласно Кельнскому Протоколу (2007 г), к 2030 г. отношение к сельскохозяйственным ГМ культурам изменится в сторону одобрения их использования.

Достижения и перспективы развития

Генная инженерия в медицине

Потребности здравоохранения, необходимость решения проблем старения населения формируют устойчивый спрос на генно-инженерные фармпрепараты (с годовым объемом продаж в 26 млрд. долл. США) и лечебно-косметические средства из растительного и животного сырья (с годовым объемом продаж около 40 млрд. долл. США).

Среди многих достижений генной инженерии, получивших применение в медицине, наиболее значительное – получение человеческого инсулина в промышленных масштабах.

В настоящее время по данным ВОЗ в мире насчитывается около 110 млн. людей, страдающих диабетом. Инсулин, инъекции которого показаны больным этим заболеванием, уже давно получают из органов животных и используют в медицинской практике. Однако многолетнее применение животного инсулина ведет к необратимому поражению многих органов пациента из-за иммунологических реакций, вызываемых инъекцией чужеродного человеческому организму животного инсулина. Но даже потребности в животном инсулине до недавнего времени удовлетворялись всего на 60 – 70%. Генные инженеры в качестве первой практической задачи клонировали ген инсулина. Клонированные гены человеческого инсулина были введены с плазмидой в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. В России получение генно-инженерного человеческого инсулина – Инсурана ведется в Институте биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН. Сегодня отечественный инсулин производится в объеме, достаточном для обеспечения больных диабетом г. Москвы. Вместе с тем, потребность всего российского рынка в генно-инженерном инсулине удовлетворяется, в основном, импортными поставками. Мировой рынок инсулина составляет в настоящее время более 400 млн. долларов, ежегодное потребление около 2500 кг.

Развитие генной инженерии в 80-х годах прошлого столетия обеспечило хороший задел России в создании генно-инженерных штаммов микроорганизмов с заданными свойствами – продуцентов биологически активных веществ, в разработке генно-инженерных методов реконструирования генетического материала вирусов, в получении лекарственных субстанций, в том числе и с использованием компьютерного моделирования. До стадии производства доведены рекомбинантный интерферон и лекарственные формы на его основе медицинского и ветеринарного назначения, интерлейкин (b-лейкин), эритропоэтин. Несмотря на растущий спрос на высокоочищенные препараты, отечественное производство иммуноглобулинов, альбумина, плазмола обеспечивает 20% потребностей внутреннего рынка.

Активно ведутся исследования по разработке вакцин для профилактики и лечения гепатитов, СПИДа и ряда других заболеваний, а также конъюгированных вакцин нового поколения против наиболее социально значимых инфекций. Полимер-субъединичные вакцины нового поколения состоят из высокоочищенных протективных антигенов различной природы и носителя – иммуностимулятора полиоксидония, обеспечивающего повышенный уровень специфического иммунного ответа. Прививки против подавляющего большинства известных инфекций Россия могла бы обеспечить на базе собственного иммунологического производства. Полностью отсутствует только производство вакцины против краснухи.

Генная инженерия для сельского хозяйства

Генетическое улучшение сельскохозяйственных культур и декоративных растений представляет собой длительный и непрерывный процесс с использованием все более точных и предсказуемых технологий. В научном отчете ООН (за 1989 год) сказано следующее: «Поскольку молекулярные методы наиболее точны, те, кто их применяет, в большей степени уверены в том, какими признаками они наделяют растения, и, следовательно, реже получают незапланированные эффекты, чем при использовании обычных методов селекции.»

Преимущества новых технологий уже широко используются в таких странах, как США, Аргентина, Индия, Китай и Бразилия, где генетически модифицированные культуры возделывают на больших территориях.

Новые технологии также имеют большое значение для малоимущих фермеров и жителей бедных стран, особенно женщин и детей. Например, генетически модифицированные, устойчивые к вредителям, хлопчатник и кукуруза требуют применения инсектицидов в значительно меньших объемах (что делает труд на ферме более безопасным). Такие культуры способствуют повышению урожайности, получению фермерами более высоких доходов, снижению уровня бедности и риска отравления населения химическими пестицидами, что особенно характерно для ряда стран, в том числе для Индии, Китая, ЮАР и Филиппин.

Самыми распространенными ГМ растениями являются культуры, устойчивые к недорогим, наименее токсичным и наиболее широко используемым гербицидам. Возделывание таких культур позволяет получать более высокий урожай с гектара, избавиться от изнурительной ручной прополки, тратить меньше средств за счет минимальной или беспахотной обработки земли, что, в свою очередь, приводит к снижению эрозии почвы.

В 2009 году произошла замена генетически модифицированных культур первого поколения продуктами второго поколения, что впервые привело к увеличению урожайности per se. Пример биотехнологической культуры нового класса (над созданием которой работали многие исследователи) – устойчивая к глифосату соя RReady2Yield™ , выращивалась в 2009 году в США и Канаде более чем на 0.5 миллионах га.

Внедрение генной инженерии в современную агробиологию может быть проиллюстрировано следующими фактами из ряда зарубежных экспертных обзоров, в том числе, из ежегодного обзора независимой Международной службы по мониторингу за применением агробиотехнологий (ISAАA), возглавляемой известным в мире экспертом Клайвом Джеймсом (Claiv James): (www.isaaa.org)

В 2009 году в 25 странах мира выращивали ГМ культуры на площади 134 млн. га (что составляет 9% от 1,5 млрд. га всех пахотных земель в мире). Шесть стран ЕС (из 27) возделывали Bt кукурузу, и в 2009 году площади ее посевов достигли более 94 750 га. Анализ мирового экономического эффекта использования биотехнологических культур за период с 1996 по 2008 г.г. показывает рост прибыли в размере 51,9 миллиардов долларов благодаря двум источникам: во-первых, это сокращение производственных затрат (50%) и, во-вторых, значительная прибавка урожая (50%) в размере 167 миллионов тонн.

В 2009 году общая рыночная стоимость семян ГМ культур в мире составила 10.5 миллиардов долларов. Общая стоимость по зерну биотех кукурузы и сои, а также хлопчатника в 2008 году составила 130 млрд. долларов, и ожидается, что ее ежегодный рост составит 10 – 15%.

Подсчитано, что в случае полного принятия биотехнологии, к концу периода 2006 – 2015 г. прибыль всех стран в пересчете на ВВП вырастет на 210 млрд. долл. США в год.

Наблюдения, проводимые с начала применения в сельском хозяйстве устойчивых к гербицидам сельскохозяйственных культур, убедительно доказывают, что фермеры получили возможность более эффективно бороться с сорняками. При этом рыхление и распахивание полей утрачивают свое значение как средства борьбы с сорняками. В итоге снижается расход тракторного топлива, улучшается структура почвы и предотвращается ее эрозия. Целевые инсектицидные программы выращивания Bt хлопчатника предусматривают меньшее число опрыскиваний посевов и, следовательно, меньшее количество выездов техники на поля, что приводит к сокращению эрозии почв. Все это невольно содействует внедрению консервирующей технологии обработки почвы, направленной на снижение почвенной эрозии, уровня углекислого газа и уменьшения потери воды.

Для современного состояния науки характерен комплексный подход, создание единых технологических платформ для проведения широкого спектра исследований. Они объединяют не только биотехнологию, молекулярную биологию и генную инженерию, но также и химию, физику, биоинформатику, транскриптомику, протеомику, метаболомику.

Рекомендуемая литература
1. Дж. Уотсон. Молекулярная биология гена. М.: Мир. 1978.
2. Стент Г., Кэлиндар Р. Молекулярная генетика. М.: Мир. 1981
3. С.Н. Щелкунов «Генетическая инженерия». Новосибирск, издательство Сибирского Университета, 2008
4. Глик Б. Молекулярная биотехнология. Принципы и применение / Б. Глик, Дж. Пастернак. М.: Мир, 2002
5. Генная инженерия растений. Лабораторное руководство. Под редакцией Дж. Дрейпера, Р.Скотта, Ф. Армитиджа, Р. Уолдена. М.: «Мир». 1991.
6. Агробиотехнология в мире. Под ред. Скрябина К.Г. М.: Центр «Биоинженерия» РАН, 2008. – 135 с.
7. Кларк. Д., Рассел Л. Молекулярная биология простой и занимательный подход. М.: ЗАО «Компания КОНД». 2004

Ссылки
1. «О государственном регулировании генно-инженерной деятельности». ФЗ-86 в ред. 2000 г., ст.1
2. Кельнский Протокол, Cologne Paper, принят на конференции «На пути к Биоэкономике, основанной на знаниях» (Кельн, 30 мая 2007 г.), организованной Европейским Союзом в период президентства Германии в ЕС.

Генная инженерия – это направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств.

Формальной датой рождения генной инженерии считают 1972 год. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или ферменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

Генная инженерия бактерий

В 1972 году группа исследователей во главе с американским биохимиком Полом Бергом, работавшим в Стэнфордском университете, что неподалёку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной ДНК. Такую молекулу часто называют гибридной, так как она состоит из ДНК-фрагментов различных организмов.

Первая рекомбинантная молекула ДНК состоит из фрагмента ДНК бактериофага кишечной палочки (E. coli), группы генов самой этой бактерии, ответственные за сбраживание сахара галактозы, и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьян. Такая рекомбинантная структура теоретически могла обладать функциональной активностью в клетках, как кишечной палочки, так и обезьяны, ведь в неё входила часть ДНК фага, обеспечивающая её способность реплицироваться (самокопироваться) в E. coli, и вся ДНК SV40, реплицирующаяся в клетках обезьяны.

Фактически это была первая гибридная молекула ДНК, которая могла бы, как челнок, «ходить» между бактерией и животным. Но именно это экспериментально не проверил П.Берг и его коллеги.

Учёные разных стран, развивая идеи П.Берга, создали in vitro функционально активные гибридные ДНК. Первыми эту задачу решили американцы Стэнли Коен из Стэнфордского университета и его коллега Герберт Бойер из Калифорнийского университета в Сан-Франциско. В их работах появился новый и очень важный «инструмент» всех последующих генно-инженерных работ – вектор.

Основные методы генной инженерии бактерий были разработаны в начале 70-х годов прошлого века. Их суть заключается во введении в организм нового гена. Наиболее распространённый из них – конструирование и перенос рекомбинантных ДНК.

Генная инженерия растений

При введении новых генов в эукариотические клетки, например, растительные, возникает немало трудностей. Одна из них заключается в том, что генетическое строение растений намного сложнее и менее изучено, чем строение бактерий, остававшихся до недавнего времени основным объектом генных инженеров. К тому же изменить генотип всех клеток многоклеточного организма невозможно. Значительно затрудняется перенос векторных систем прочная целлюлозная оболочка, которая покрывает клетки растений.

Несмотря на сказанное генная инженерия растений применяется в сельском хозяйстве, особенно в растениеводстве. Это стало возможным, во-первых, потому, что изолированные от многоклеточного организма клетки растений могут расти и размножаться на искусственных питательных средах, то есть in vitro или вне организма. Во-вторых, установлено, что ядра зрелых растительных клеток содержат всю информацию, необходимую для кодирования целого организма. Так, если клетки какого-либо растения пометить в подходящий растительный раствор, то их можно вновь заставить делиться и образовывать новые растения. Это свойство растительных клеток, связанное со способностью к регенерации уже после достижения ими зрелости и специализации, названо тотипотентностью.

Использование почвенных агробактерий

Один их эффективных способов переноса генов в растения – использование в качестве вектора почвенных бактерий, прежде всего, Agro bacterium tumefaciens («полевая бактерия, вызывающая рак растений»). Эта бактерия была выделена в 1897г. из опухоли винограда. Она заражает многие двудольные растения и вызывает у них образование больших наростов – корончатых галлов.

Патогенные штаммы этой агробактерии в отличие от непатогенных содержат крупную плазмиду, специально предназначенную для переноса генов из бактериальной клетки в растительную. Плазмида получила название Ti, то есть вызывающая опухоль. Именно в неё обычно встраивается подготовленный для переноса ген.

Кроме A. tumefaciens для введения новых генов в растения используют также бактерию вида A. Rhizogenes. Они вызывают у двудольных растений очень мелкие опухоли, из которых вырастает множество корней. Болезнь, которую вызывают эти ризогенные агробактерии, называют «бородатый» или «волосатый» корень. В них обнаружены плазмиды, похожие на Ti. Они названы Ri или корнеиндуцирующими.

В последние годы Ri-плазмиды применяются в генной инженерии растений не менее широко, чем Ti-плазмиды. Это объясняется, прежде всего, тем, что клетки корончатых галлов плохо растут на искусственно питательных средах и из них не удаётся вырастить целые растения. Напротив, клетки «бородатого» корня хорошо культивируются и регенерируются.

Использование вирусов

Вирусы также достаточно часто используются для конструирования векторов, обеспечивающих перенос новых генов в растения. Чаще других для этой цели выделяют вирус мозаики цветной капусты. В природе он заражает только крестоцветные, однако известно, что в экспериментальных условиях способен поражать и другие виды растений.

Геном вируса мозаики представляет собой небольшую двунитевую кольцевую ДНК. Некоторые из его генов могут быть заменены на другие, интересующие исследователя. Проникая в растительную клетку, вирус вносит в неё не только свою собственную ДНК, но и встроенный в неё чужеродный ген.

Векторной системой, способной переносить новые гены в растения, могут быть и вирусы, у которых генетический материал представлен РНК. Вирусы этой группы способны с высокой частотой проникать в растительные клетки, активно в них размножаться и тем самым обеспечивать высокий уровень экспрессии введённых генов вследствие увеличения их количества.

Конструирование рекомбинантной ДНК

Техника встраивания генов в векторы предназначенных для растений аналогична той, что используется для бактериальных клеток. Плазмидная ДНК и ДНК вирусов разрезается рестриктазами с образованием «липких» концов. Если применяется фермент, образующий тупые концы, пользуются короткими фрагментами ДНК. Встраивая новый ген в подготовленный плазмидный или вирусный вектор с помощью ДНК-лигазы, получают рекомбинантную ДНК.

Направления генной инженерии растений

Основные направления генной инженерии растений связаны с созданием культур, устойчивых к насекомым-вредителям, гербицидам и вирусам, способных к азотфиксации, а также с повышением качества и количества продуктов.

Растения устойчивые к насекомым-вредителям

Насекомые-вредители могут приводить к значительному снижению урожая различных сельскохозяйственных культур. Для борьбы с ними используются химические вещества,

называемые инсектицидами. Первым инсектицидом, завоевавшим всемирное признание, оказалась бордосская жидкость.

Помимо препаратов, синтезированных химически, известны инсектициды, полученные на основе естественных врагов насекомых – бактерий и грибов. Многие годы в мире применяют инсектициды бактериального происхождения – препараты спор, которые образует почвенная бактерия Bacillus thuringiensis («тюрингская бацилла», или сокращённо Bt). Инсектицидная активность этих спор связана с находящимися в них ядовитыми кристаллами белка эндотоксина. Проглотив такую спору, гусеница вскоре погибает от паралича кишечника.

Преимущество инсектицидов этого типа в том, что они не токсичны для человека и животного, их легко отмыть и инактивировать. Недостаток таких инсектицидов – сравнительно короткий период активности в полевых условиях. Эффективность их действия при распылении на растения колеблется, и её трудно прогнозировать. Всё это обуславливает необходимость повторных обработок.

Новое направление в борьбе с насекомыми-вредителями – создание на основе генно-инженерной технологии устойчивых к ним трансгенных растений. Успешными оказались исследования Марка ван Монтегю и его коллег из Гентского университета, результаты которых они опубликовали в работе «Трансгенные растения, защищённые от нападения насекомых» (1987).

Они выделили ген, кодирующий синтез белка эндотоксина, из ДНК тюрингской бациллы и вставили его в векторную Ti-плазмиду бактерии A. tumefaciens. Этой агробактерией заражали диски, вырезанные из кусочков листьев табака. Трансформированную растительную ткань выращивали на питательной среде определённого химического состава, которая обеспечивала рост и развитие трасгенных растений с листьями, содержащими белок эндотоксин. При попадании в кишечник некоторых видов насекомых эндотоксин связывается с их внутренней поверхностью и повреждает эпителий, в результате переваренная пища не всасывается и насекомое погибает от голода.

В последние годы ген бактериального токсина удалось ввести в клетки многих растений. В частности, специалисты компании «Monsanto» создали картофель «New Leaf» («Новый лист»), устойчивый к колорадскому жуку, Bt-кукурузу и Bt-хлопок, сою «Roundup Ready» и др. Однако использование Bt-культур вызывает сомнения из-за здоровья человека и безопасность окружающей среды. Так, многие задаются вопросом: если колорадский жук не ест ботву, полезен ли такой картофель? Нет уверенности в том, что растительная продукция с «генными добавками» не повлияет отрицательно на будущее поколение.

При этом перенос пыльцы генетически модифицированных культур на растения соседних полей приведёт к их генетическому загрязнению, последствия которого трудно предсказуемы. На биологическое разнообразие может повлиять гибель полезных насекомых, для которых Bt-культуры оказались опасными. Кроме того, возможно, появятся супервредители, так как исходные виды насекомых достаточно быстро могут приобрести устойчивость к бактериальному эндотоксину.

Растения, устойчивые к вирусам

Создание вирусоустойчивых сортов – ещё одно направление генной инженерии растений.

Для создания таких сельскохозяйственных растений используется так называемая перекрёстная защита. Сущность этого является в том, что растения, инфицированные одним видом вируса, становятся устойчивыми к другому, родственному вирусу, так как происходит своего вида вакцинация. В растения вводят ген ослабленного штамма вируса, что предотвращает его поражение более вирулентным (вызывающим заболевание) штаммом того же или близкородственного вируса.

Таким геном-защитником может служить ген, кодирующий у вируса синтез белка оболочки, окружающий нуклеиновую кислоту. Этот ген используется для создания in vitro с помощью обратной транскриптазы к ДНК - ДНК-копии. К ней присоединяют необходимые регуляторные элементы и с помощью специальным образом подготовленной Ti-плазмидой агробактерии переносят в растения. Трансформированные растительные клетки синтезируют белок оболочки вируса, а выращенные из них трансгенные растения либо совсем не заражаются его более вирулентными штаммами, либо дают слабую и запоздалую реакцию на вирусную инфекцию.

Это один из механизмов защитного действия вирусного гена, который до сих пор не вполне ясен и может сопровождаться нежелательными последствиями.

Генетическое модифицирование – новая версия сельского хозяйства

Генетическое модифицирование сельского хозяйства основано на использовании высокопродуктивных сортов растений или пород животных, полученных на основе генной селекции. Именно этим благородным делом занимаются десятилетиями генетики-селекционеры. Но их возможности ограничены рамками скрещиваний – скрещиваться и давать плодовитое потомство могут только особи, принадлежащие как правило, к одному и тому же виду. Картофель и кукуруза не обладают способностью поражать колорадского жука и кукурузного стеблевого мотылька, а безвредная для человека и животных бактерия Bacillus thuringinesis может их убивать. Генетики скрестить бациллу с картофелем не могут, а генные инженеры - могут. Генетическая селекция улучшает количественные характеристики сорта или породы (урожайность, устойчивость к заболеваниям, надои и др.); генная инженерия способна создать новое качество – перенести ген, его кодирующий, из одного биологического вида в другой, в частности, ген инсулина от человека в дрожжи. И генетически модифицированные дрожжи станут фабрикой инсулина.

Считается, что единственное принципиальное препятствие, стоящее перед генными инженерами,- это или их ограниченная фантазия, или ограниченное финансирование. Непреодолимых природных ограничений в генной инженерии, похоже, нет.

Генная инженерия: от анализа к синтезу

Как мы уже знаем именно в 1972г. Пол Берг впервые объединил в пробирке в единое целое два гена, выделенных из разных организмов. И получил «молекулярный» гибрид, или рекомбинантную ДНК, которая в природных условиях никак образоваться не могла. Затем такую рекомбинантную ДНК внесли в бактериальные клетки, создав, таким образом, первые трансгенные организмы, несущие гены бактерии и обезьяны, точнее онкогенного вируса обезьяны.

Затем были сконструированы микробы, несущие гены мушки дрозофилы, кролика, человека. Это вызвало тревогу.

Несколько ведущих американских учённых, в том числе сам Пол Берг, опубликовали в журнале «Сайенс» письмо, в котором призывали приостановить работы по генной инженерии до тех пор, пока не будут выработаны правила техники безопасности по обращению с трансгенными организмами. Предполагалось, что организмы, которые несут чужеродные гены, могут иметь свойства, опасные для человека и среды его обитания. Чисто умозрительно высказывалось мнение, что трансгенные организмы, созданные без учёта их вероятных экологических характеристик и не прошедшие совместной эволюции с природными организмами, «вырвавшись из пробирки на свободу», смогут бесконтрольно и неограниченно размножиться. Это приведёт к вытеснению природных организмов из мест их естественного обитания; последующей цепной реакции нарушений экологического равновесия; сокращению биоразнообразия; активации дремлющих, ранее не известных патогенных микроорганизмов; возникновению эпидемий ранее не известных болезней человека, животных и растений; «побегу» чужеродных генов из трансгенных организмов; хаотическому переносу генов в биосфере; появлению монстров, всё уничтожающих.

Две версии будущего: трансгенный рай или трансгенный апокалипсис

Кроме опасений биологического и экологического характера стали высказываться опасения нравственные, этические, философские, религиозные.

В 1973-1974гг. в дискуссию включились американские политики. В итоге на генно-инженерные работы был наложен временный мораторий – «запрет до выяснения обстоятельств». В течение запрета на основании всех имеющихся знаний следовало оценить все потенциальные опасности генной инженерии и сформулировать правила техники безопасности. В 1976г. Правила были созданы, запрет снят. По мере всё ускоряющегося развития строгость правил безопасности всё время снижалась. Первоначальные страхи оказались сильно преувеличенными.

В итоге 30-летнего мирового опыта генной инженерии стало ясно, что в процессе «мирной» генной инженерии что-либо мирного возникнуть не может. Первоначальная техника безопасности работ с трансгенными организмами исходила из того, что созданные химеры могут быть опасны, как чума, чёрная оспа, холера или сибирская язва. Поэтому с трансгенными микробами работали, словно они патогенны, в специальных инженерных сооружениях. Но постепенно становилось всё более очевидным: риск сильно преувеличен.

В общем, за все 30 лет интенсивного и всё расширяющегося применения генной инженерии ни одного случая возникновения опасности, связанной с трансгенными организмами, зарегистрировано не было.

Возникла новая отрасль промышленности – трансгенная биотехнология, основанная на конструировании и применении трансгенных организмов. Сейчас в США около 2500 генно-инженерных фирм. В каждой из них работают высококвалифицированные специалисты, которые конструируют организмы на основе вирусов, бактерий, грибов, животных, в том числе насекомых.

Когда речь идёт об опасности или безопасности трансгенных организмов и продуктов из них полученных, то самые распространённые точки зрения основываются преимущественно на «общих соображениях и здравом смысле». Вот, что обычно говорят те, кто против:

  • природа устроена разумно, любое вмешательство в неё всё только ухудшит;
  • поскольку сами учёные не могут со 100%-ной гарантией предсказать всё, особенно
  • отдалённые последствия применения трансгенных организмов, не надо этого делать вообще.

А вот аргументы тех, кто выступает за:

  • в течение миллиардов лет эволюции природа успешно «перепробовала» все
  • возможные варианты создания живых организмов, почему же деятельность человека по
  • конструированию изменённых организмов должна вызывать опасения?
  • в природе постоянно происходит перенос генов между разными организмами (в
  • особенности между микробами и вирусами), так что ничего принципиально нового
  • трансгенные организмы в природу не добавят.

Дискуссия о выгодах и опасностях применения трансгенных организмов обычно концентрируется вокруг главных вопросов о том, опасны ли продукты, полученные из трансгенных организмов и опасны ли сами трансгенные организмы для окружающей среды?

Защита здоровья и окружающей среды, или бесчестная борьба за экономические интересы?

Нужна ли международная организация, которая на основе предварительной экспертизы регулировала бы применение трансгенных организмов? Чтобы она разрешала или запрещала выпуск на рынок продуктов, полученных из таких организмов? Ведь семена, тем более пыльца границ не признают.

А если международное регулирование биотехнологии не нужно, не приведёт ли чересполосица национальных правил, регулирующих обращение с трансгенными организмами, к тому, что из стран, где такие правила «либеральны», трансгенные растения «убегут» в страны, где правила «консервативны»?

Даже если большинство стран и договорятся о согласовании правил оценки риска трансгенных организмов, как быть относительно профессиональных и моральных качеств чиновников и экспертов? Будут ли они одинаковыми, например, в США, Германии, Китае, России и в Папуа Новой Гвинее?

Если развивающиеся страны и подпишут, например Всемирную конвенцию о правилах интродукции трансгенных организмов, кто им заплатит за создание и поддержание соответствующих национальных ведомств, за консультации, экспертизу, мониторинг?

Примерно половина всех программ, разработанных ООН, UNIDO, UNEP, направлены на решение проблем, связанных с трансгенными организмами. Есть два главных документа: «Кодекс добровольно принимаемых правил, которые надлежит придерживаться при интродукции (выпуске) организмов в окружающую среду», подготовленный Секретариатом UNIDO и «Протокол по биобезопасности в рамках Конвенции по биологическому разнообразию» (UNEP).

Европейская точка зрения: отсутствие международно-согласованных правил применения трансгенных организмов приведёт к широкомасштабным экспериментам в открытой среде, вредные последствия которых могут быть необратимыми.

Итак, где же истина? Можно ли сделать рациональный выбор между определённой пользой и неопределённым риском? Правильный ответ таков: опасны или безопасны трансгенные растения и продукты на их основе, опасность или безопасность которых пока убедительно не показаны исходя из современного уровня знаний, разумнее избегать их употребления.

Продукты питания, модифицированные методами генной инженерии

Первое опытное растение было получено в 1983 году в институте растениеводства в Кёльне. Через 9 лет в Китае начали выращивать трансгенный табак, который не портили насекомые-вредители. Первыми коммерческими трансгенами были помидоры сорта «Flavr Savr», созданные компанией «Calgene» и появившиеся в супермаркетах США в 1994г. Однако некоторые проблемы, связанные с их производством и транспортировкой, привели к тому, что компания была вынуждена уже через три года снять сорт с производства. В дальнейшем были получены многие сорта различных сельскохозяйственных культур с искусственно изменённым генетическим кодом. Среди них наиболее распространена соя (коммерческое выращивание начато с 1995г.), она составляет свыше половины от общего урожая; на втором месте – кукуруза, а за ними – хлопок, масленичный рапс, табак и картофель.

Мировые лидеры в выращивании трансгенных растений – США, Аргентина, Канада и Китай. В России уже существует несколько экспериментальных «закрытых» полей с генетически модифированными (ГМ) культурами. По сообщению директора Центра «Биоинженерии» РАН академика К.Скрябина, некоторые из них заняты картофелем, устойчивым к колорадскому жуку и полученным на основе трёх наиболее распространенных российских сортов – «Луговского», «Невского» и «Елизаветы».

Генетически модифицированные растения используются для производства, как продуктов питания, так и пищевых добавок. Например, из сои получается соевое молоко, которое заменяет натуральное для многих грудных детей. ГМ сырьё обеспечивает большую часть потребности в растительном масле и пищевом белке. Соевый лецитин (Е322) используется как эмульгатор и стабилизатор в кондитерской промышленности, а шкурки соевых бобов – при производстве отрубей, хлопьев и закусок. Помимо этого, ГМ-соя широко применяется в пищевой промышленности и в качестве дешёвого наполнителя. Она в значительном количестве входит в состав таких продуктов, как хлеб, колбаса, шоколад и др.

Модифицированные картофель и кукурузу используют для приготовления чипсов, а также перерабатывают на крахмал, который применяют в качестве загустителей, студнеобразователей и желирующих веществ в кондитерской и хлебопекарной промышленности, а также при производстве многих соусов, кетчупов, майонезов. Кукурузное и рапсовое масло используют в виде добавок в маргарин, выпечку, бисквиты и т.д.

Несмотря на то, что на мировом рынке всё больше появляется продуктов, полученных с использованием генетически модифицированных источников, потребители всё-таки настороженно относятся к ним, и не торопятся переходить на «пищу Франкенштейна».

Проблема продуктов питания, модифицированных на основе генной инженерии, вызвала бурную полемику в обществе. Главный аргумент сторонников генетической пищи – характеристики самих сельскохозяйственных культур, которым биоинженеры прибавили немало полезных для потребителя свойств. Они менее прихотливы и более устойчивы к болезням, насекомым-вредителям, а главное – к пестицидам, которыми обрабатываются поля и чей вред на человеческий организм давно доказан. Продукты из них лучшего качества и товарного вида, обладают повышенной пищевой ценностью и дольше хранятся.

Так, из «улучшенных» генными инженерами кукурузы, соевых бобов и рапса получается растительное масло, в котором снижено количество насыщенных жиров. В «новых» картофеле и кукурузе больше крахмала и меньше воды. Такой картофель при жарке требует немного масла, из него получаются воздушные чипсы и картофель фри, который сравнительно с немодифицированными продуктами легче усваивается. «Золотой» рис, полученный в 1999г., обогащён каротином для профилактики слепоты у детей развивающихся стран, Гед рис – основной продукт питания.

Ещё недавно прогнозы генных инженеров о «съедобных вакцинах» выглядели как полная фантастика. Однако уже выращен табак, в генетический код, которого «вмонтирован» человеческий ген, отвечающий за выработку антител к вирусу кори. В ближайшем будущем, по утверждению учёных, будут созданы другие подобные растения с противовирусной начинкой. В перспективе это может стать одним из главных путей будущей иммунопрофилактики.

Основной вопрос: безопасны ли для человека продукты питания, полученные на основе генетически модифицированных источников, пока остается без однозначного ответа, хотя в последние годы стали известны результаты некоторых исследований, которые свидетельствуют о том, что генетически модифицированные продукты отрицательно влияют на живые организмы.

Так, британский профессор Арпад Пуштай (Arpad Pusztai), работавший в Государственном Институте Роветт (Rowett) города Абердин, в апреле 1998г. заявил в телевизионном интервью, что проведённые им эксперименты выявили необратимые изменения в организме крыс, питавшихся генетически модифицированным картофелем. Они страдали угнетением иммунной системы и различными нарушениями деятельности внутренних органов. Заявление учёного стало поводом для его увольнения с работы за «распространение заведомо ложной псевдонаучной информации».

Однако в феврале 1999г. независимая группа из 20 известных учёных после тщательного изучения опубликовала заключение о работе Арпада Пуштая, в котором полностью подтверждалась достоверность полученных им результатов. В связи с этим министр сельского хозяйства Великобритании был вынужден признать эксперименты заслуживающими внимания и рассмотреть вопрос о запрещении продаж генетически модифицированных продуктов без всестороннего исследования и предварительного лицензирования.

Помимо этого, выявлено, что один из сортов генетически модифицированной сои опасен для людей, он давал аллергию на орехи. Этот генно-модифицированный продукт получен одной из крупнейших компаний по производству семян «Pioneer Hybrid International» после введения в соевую ДНК гена бразильского ореха, запасной белок, которого богат такими аминокислотами, как цистеин и метионин. Компания была вынуждена выплатить компенсацию пострадавшим, а проект свернуть.

Компоненты, содержащиеся в генетически модифицированных продуктах, могут быть не только аллергенами, но и высокотоксичными, то есть наносящими вред живому организму химическими веществами. Так, через несколько лет применения появились сообщения о серьёзных побочных эффектах от использования пищевой добавки, известной как аспартам (Е 951).

По химическому строению аспартам – метилированный дипептид, состоящий из остатков двух аминокислот – аспарагиновой кислоты и фенилаланина. Добавленный в пищу в ничтожных количествах, он полностью заменяет сахар (слаще сахара почти в 200 раз). В связи с этим аспартам относят к классу подсластителей, то есть низкокалорийных веществ несахарной природы, придающих пищевым продуктам и готовой пищи сладкий вкус. Часто подсластители путают с сахарозаменителями, которые по химической природе представляют собой углеводы и обладают повышенной калорийностью.

Аспартам выпускается под различными торговыми марками: «NutraSweet», «Sucrelle», «Equal», «Spoonful», «Canderel», «Holy Line» и др. На российском рынке его можно встретить также в составе многокомпонентных смесей подсластителей, таких, как «аспасвит», «аспартин», «сламикс», «евросвит», «сладекс» и др.

Долгие годы, считаясь совершенно безвредным веществом, аспартам был допущен к применению в пищевом и фармацевтическом производстве более чем в 100 странах мира. Его рекомендовали больным сахарным диабетом, а также тем, кто страдал ожирением или опасался кариеса. Он применяется при производстве более 5 тыс. наименований продуктов: безалкогольных напитков, йогуртов, молочных десертов, мороженого, кремов, жевательной резинки и других.

Особенно удобен аспартам для подслащивания пищевых продуктов, которые не требуют тепловой обработки. Кроме того, его можно использовать при моментальной пастеризации и быстром охлаждении. Однако в продуктах, которые подвергаются нагреванию, его применение нецелесообразно. Это связано с тем, что при всех замечательных свойствах у данного подсластителя есть два недостатка: он плохо растворяется в воде и не выдерживает высокой температуры. Сказанное усложняет процесс приготовления пищевых продуктов и ограничивает использование аспартама в таких областях, как хлебопекарная и другие виды пищевой промышленности, где технологически требуется повышение температуры.

При продолжительном воздействии температуры выше 30 С компоненты аспартама разделяются, причём сладость теряется, кроме того, метанол превращается в формальдегид. Последнее вещество с резким запахом вызывает свёртываемость белковых веществ и относится к категории ядовитых. В дальнейшем из формальдегида образуется муравьиная кислота, вызывающая нарушение кислотно-щелочного равновесия. Метаноловая токсичность по симптомам похожа на рассеянный склероз, поэтому больным нередко ошибочно ставили этот диагноз. Однако если рассеянный склероз не является смертельным диагнозом, то метаноловая токсичность смертельна.

Образовавшийся фенилаланин способен оказать чрезвычайно токсичное действие, особенно на нервную систему. Существует наследственное заболевание, обусловленное его избыточностью и известно как фенилкетонурия. Дети, родившиеся с названным наследственным недугом, подвержены судорогам и страдают умственной отсталостью. Причина этой болезни во врождённом дефекте фермента фенилаланингидроксилазы.

Последние достижения медицинской генетики установили, что эффективно усваивать фенилаланин могут даже не все здоровые люди. Поэтому дополнительное введение в организм данной аминокислоты не просто значительно повышает её уровень в крови, а представляет серьёзную опасность для работы мозга.

В связи со сказанным, аспартам противопоказан больным гомозиготной фенилкетонурией, и о его присутствии должно быть указано на этикетке пищевого продукта. Однако обычно запись «содержит фенилаланин, противопоказан для больных фенилкетонурией» делается таким мелким шрифтом, что её редко кто читает. Но, тем не менее, аспартам – пока единственный генетически созданный химический препарат на американском рынке, имеющий чёткую маркировку. Это оказалось возможным только после того, как стало известно относительно большое число явных подтверждений опасной токсичности аспартама, а наиболее популярные газеты и журналы США не назвали его «сладкой отравой».

Устойчивость к антибиотикам – ещё одна широко обсуждаемая проблема, связанная с генетически модифицированной пищей. В биоинженерной технологии гены устойчивости к этим лекарственным препаратам много лет используются в качестве маркеров при подготовке векторных систем, трансформирующих растительную клетку. Так, при выведении томатов сорта «Flavr Savr» использовался ген устойчивости к каналицину, а генетически модифицированной кукурузы – к ампициллину.

К сожалению, до сих пор не найден способ удаления этих маркерных генов после трансформации. Их наличие в генетически модифицированных продуктах и вызывает беспокойство медиков. Причина в том, что маркерные гены устойчивости к антибиотикам по каким-либо причинам могут быть не переварены со всей оставшейся ДНК и попадут в геном бактерий, обитающих в кишечнике человека. После выведения бактерий из организма с фекалиями, такие гены распространятся в окружающей среде и передадутся другим болезнетворным бактериям, которые станут невосприимчивыми к действию антибиотиков этой группы. Появление подобных супермикробов может привести к возникновению болезней, которые невозможно будет вылечить имеющимися лекарственными средствами.

ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ, совокупность методов биохимии и молекулярной генетики, с помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов, и создавать клетки и организмы с не существующими в природе сочетаниями генов, с заданными наследуемыми свойствами. Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетические кода обеспечивает экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии нуклеиновых кислот, выявление молекулярных особенностей организации и функционирования генов (в том числе установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК. Важными предпосылками для появления генетической инженерии явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами, что позволило сформулировать представление о векторах: молекулах - переносчиках генов. Огромное значение в развитии методологии генетической инженерии сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определённые последовательности - сайты - и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусственных структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов. Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы создания рекомбинантных молекул ДНК. Термин «генетическая инженерия» получил распространение после того, как в 1972 году П. Бергом с сотрудниками впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40 (рис. 1). В 1973 году С. Коэн с сотрудниками использовали плазмиду pSC101 и рестриктазу (EcoRI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала, по крайней мере, один фрагмент чужеродной ДНК, встроенной в EcoRI-сайт плазмиды (рис. 2). Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основной современной стратегии получения рекДНК сводится к следующему:

1) в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы, встраивают принадлежащие другому организму фрагменты ДНК, содержащие определённые гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;

2) образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;

3) отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению. Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а следовательно, и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определённую рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в которых заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (например, продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа: ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы; последние должны быть способны к репликации.

В качестве векторных молекул в генетической инженерии используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетических маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованиям, например, лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, а также по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач генетической инженерии - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (смотри Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетический код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т. к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие, на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой нитронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив так называемый ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетического кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, так как состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии. Генетическая инженерия значительно расширила экспериментальные границы молекулярной биологии, поскольку стало возможным вводить в различные типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах. Данный подход открыл перспективы создания принципиально новых микробиологических продуцентов биологически активных веществ, а также животных и растений, несущих функционально активные чужеродные гены. Многие ранее недоступные биологически активные белки человека, в том числе интерфероны, интерлейкины, пептидные гормоны, факторы крови, стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Всё это дало мощный импульс к развитию биотехнологии.

Главными объектами генетической инженерии являются бактерии Escherichia coli (кишечная палочка) и Bacilltis subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae, различные линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами генетической инженерии создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов млекопитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов различных инфекционных агентов (ДНК-вакцинация). Новейшим направлением генетической инженерии является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.

Опасения, связанные с проведением генно-инженерных экспериментов. Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетическую информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологическое равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того, отмечалось, что вмешательство человека в генетический аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 году эти проблемы обсуждались на международной конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов генетической инженерии, но при обязательном соблюдении определённых правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам, обычным в микробиологических исследованиях, созданию специальных защитных устройств, препятствующих распространению биологических агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под генетической инженерией понимают только работу с рекДНК, а как синонимы генетической инженерии используются термины «молекулярное клонирование», «клонирование ДНК», «клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину «генетическая инженерия». В России как синоним генетической инженерии широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: генетическая инженерия ставит целью создание организмов с новой генетической программой, в то время как термин «генная инженерия» поясняет, как это делается - путём манипуляции с генами.

Лит.: Щелкунов С. Н. Клонирование генов. Новосиб., 1986; он же. Генетическая инженерия. 2-е изд., Новосиб., 2004; Уотсон Дж., Туз Дж., Курц Д. Рекомбинантные ДНК. М., 1986; Клонирование ДНК. Методы. М., 1988; Новое в клонировании ДНК: Методы. М., 1989.

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) - игрунка обыкновенная.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.

_____________________________________________________________________________________________

Генетическая инжене́рия (генная инженерия)

Это совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии , используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.


Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 - 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании "Генентек" впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.
Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя таким образом деятельность организмов, а также - переносить генетические инструкции из одного организма в другой, в том числе – организмы другого вида. По мере того, как генетики всё больше узнают о работе генов и белков, всё более реальной становится возможность произвольным образом программировать генотип (прежде всего, человеческий), с лёгкостью достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждённых органов и даже бессмертие.