Трансатлантический телефонный кабель. Облака в океане, или краткий экскурс в жизнь подводных кабелей

Описывая систему кабелей, которые поддерживают работу Интернета, Нил Стивенсон (Neal Stephenson) как-то сравнил Землю с материнской платой компьютера.

Ежедневно вы видите на улицах телефонные столбы, соединяющие сотни километров проводов, и знаки, предупреждающие о зарытых оптоволоконных линиях, но ведь на самом деле, это лишь малая часть физического облика глобальной Сети. Основные коммуникации прокладываются в самых холодных глубинах океана, и в сегодняшней статье мы перечислим 10 любопытных фактов об этих подводных кабелях.

1. Монтаж кабеля — это медленный, утомительный и дорогостоящий процесс

99% международных данных передается по проводам, лежащим на дне океана, которые называются подводными коммуникационными кабелями. В общей сложности, их длина превышает сотни тысяч миль, а прокладывают такие провода даже на глубине 9 км.

Установка кабелей производится специальными кораблями-укладчиками. Им нужно не просто сбросить на дно провод с прикрепленным грузом, но и проследить за тем, чтобы он проходил только по плоской поверхности, минуя коралловые рифы, обломки затонувших кораблей и другие распространенные препятствия.

Диаметр мелководного кабеля составляет примерно 6 см, а вот глубоководные кабели намного тоньше — толщиной с маркер. Разница в параметрах обусловлена обыкновенном фактором уязвимости — на глубине свыше 2 км практически ничего не происходит, поэтому кабель не нужно покрывать оцинкованным защитным слоем. Провода, расположенные на небольших глубинах, закапывают на дне, используя направленные струи воды под высоким давлением. Хотя стоимость прокладки одной мили подводного кабеля варьируется в зависимости от его общей длины и назначения, этот процесс всегда обходится в сотни миллионов долларов.

2. Акулы пытаются съесть Интернет

Никто не знает, почему именно акулам так нравится грызть подводные кабели. Возможно, это как-то связано с электромагнитными полями. Или же они просто любопытны. А может быть, таким образом они пытаются уничтожить нашу коммуникационную инфраструктуру перед сухопутной атакой. По сути, акулы в буквальном смысле жуют наш Интернет и иногда повреждают изоляцию проводов. В ответ на это такие компании, как Google, покрывают свои коммуникации слоем защитного кевлара.

3. Под водой Интернет уязвим так же, как и под землей

Ежегодно бульдозеры разрушают подземные коммуникационные кабели, и хотя в океане нет подобной строительной техники, под водой проводам угрожают множество других опасностей. Помимо акул, интернет-кабели могут быть повреждены корабельными якорями, рыбацкими сетями и различными стихийными бедствиями.

Одна из компаний, базирующаяся в Торонто, предложила прокладывать такие провода через Арктику, которая соединяет Токио и Лондон. Ранее это считалось невозможным, но климат изменился, и благодаря тающему ледяному покрову данный проект стал вполне реализуемой, но все еще невероятно дорогой задачей.

4. Использование подводных кабелей — это далеко не новая идея

Подводный телеграф между Америкой и Европой

В 1854 году начался монтаж первого трансатлантического телеграфного кабеля, который связывал Ньюфаундленд и Ирландию. Спустя 4 года, была отправлена первая передача с текстом: «Лоус, Уайтхаус получил пятиминутный сигнал. Сигналы катушки слишком слабы для передачи. Попробуйте отправлять медленно и размеренно. Я поставил промежуточный шкив. Ответьте катушками». Согласитесь, не очень вдохновляющая речь («Уайтхаусом» здесь называют Уилдмана Уайтхауса (Wildman Whitehouse), занимавшего на тот момент должность главного электрика Атлантической телеграфной компании).

Для исторической справки: в течение этих четырех лет конструирования кабеля Чарльз Диккенс (Charles Dickens) продолжал писать романы, Уолт Уитмен (Walt Whitman) опубликовал сборник «Листья травы» (Leaves of Grass), небольшое поселение под названием Даллас было официально присоединено к штату Техас, а Авраам Линкольн (Abraham Lincoln) — баллотирующийся в Сенат США — выступил со своей знаменитой речью о «Разделенном Доме».

5. Шпионы обожают подводные кабели

В разгар холодной войны СССР часто транслировала слабо закодированные сообщения между своими двумя основными военно-морскими базами. По мнению русских офицеров, в более мощном шифровании данных не было нужды, поскольку базы были напрямую соединены подводным коммуникационным кабелем, располагающимся в советских территориальных водах, которые кишели всевозможными датчиками. Они считали, что американцы никогда не рискнули бы начать Третью Мировую Войну, пытаясь получить доступ к этим проводам.

Советские военнослужащие не брали в расчет Halibut — специально оснащенную подводную лодку, способную проскользнуть мимо оборонных сенсоров. Эта американская лодка нашла подводный кабель и установила на него гигантское прослушивающее устройство, после чего ежемесячно возвращалась на место для сбора всех записанных сообщений. Позже эта операция под кодовым названием «Ivy bells» была скомпрометирована бывшим аналитиком АНБ, Рональдом Пелтоном (Ronald Pelton), который продал информацию о миссии «советам». В настоящее время прослушивание подводных интернет-кабелей является стандартной процедурой для большинства шпионских агентств.

6. Правительства используют подводные кабели, чтобы избежать шпионажа

В сфере электронного шпионажа Соединенные Штаты обладали одним весомым преимуществом перед другими государствами: их ученые, инженеры и корпорации принимали активное участие в построении глобальной телекоммуникационной инфраструктуры. Основные потоки данных пересекают американскую границу и территориальные воды, что позволяет перехватывать множество сообщений.

Когда документы, украденные бывшим аналитиком АНБ Едвардом Сноуденом (Edward Snowden), обнародовали, многие страны с возмущением восприняли действия американских шпионских ведомств, которые тщательно отслеживали передачу иностранных данных. В результате, некоторые государства пересмотрели саму инфраструктуру Интернета. Бразилия, к примеру, решила проложить подводный коммуникационный кабель аж до Португалии, полностью минуя территорию США. Более того, они не позволяют американским компаниям участвовать в разработке проекта.

7. Подводные интернет-кабели — быстрее и дешевле, чем спутники

Сейчас на нашей орбите находится около 1 000 спутников, мы отправляем зонды на кометы и даже планируем миссии с высадкой на Марс. Кажется, будто создавать виртуальную коммуникационную сеть нужно именно в космосе, хотя нынешний подход с использованием подводных кабелей ничем не хуже. Но разве спутники не превзошли эту устаревшую технологию? Как выясняется, нет.

Несмотря на то, что волокно-оптические кабели и спутники изобрели примерно в одно время, космические аппараты имеют два существенных недостатка: задержка и повреждение данных. Отправка сообщений в космос и обратно действительно занимает много времени.

Между тем, оптические волокна могут передавать информацию практически со скоростью света. Если вы хотите посмотреть, каким бы был Интернет без подводных кабелей, посетите Антарктиду — единственный континент, не имеющий физического подключения к Сети. Местные исследовательские станции полагаются на спутники с высокой пропускной способностью, но даже этой мощности не хватает, чтобы передать все данные.

8. Забудьте о кибервойнах — чтобы нанести Интернету реальный ущерб, вам понадобится акваланг и пара кусачек

Хорошая новость заключается в том, что перерезать подводный коммуникационный кабель довольно сложно, ведь в каждом таком проводнике напряжение может достигать нескольких тысяч вольт. Но как показал случай, произошедший в Египте в 2013 году, сделать это вполне возможно. Тогда к северу от Александрии были задержаны несколько человек в гидрокостюмах, которые намеренно перерезали подводный кабель длиной 12 500 миль, соединяющий три континента. Скорость интернет-соединения в Египте была снижена на 60% до тех пор, пока линию не восстановили.

9. Подводные кабели нелегко ремонтировать, но за 150 лет мы все-таки научились нескольким трюкам

Если вы считаете, что замена кабеля локальной сети, который находится за вашим столом — это сложный и мучительный процесс, попробуйте починить твердый садовый шланг на дне океана. Когда подводные коммуникации повреждаются, на место отправляются специальные ремонтные корабли. Если провод находится на мелководье, роботы фиксируют его и тащат на поверхность. Если же кабель расположен на большой глубине (от 1900 метров), инженеры опускают на дно специальный захват, подымают провод и ремонтируют его прямо над водой.

10. Срок службы подводных проводников Интернета — не более 25 лет

По состоянию на 2014 год, на дне океана было проложено 285 коммуникационных проводов, 22 из которых все еще не используются. Срок эксплуатации подводного кабеля не превышает 25 лет, ведь в дальнейшем он становятся экономически невыгодным с точки зрения мощности.

Тем не менее, за последние десять лет мировое потребление данных пережило настоящий «взрыв». В 2013 году на одного человека приходилось 5 гигабайт интернет-трафика, и по мнению экспертов, к 2018 году этот показатель увеличится до 14 Гб. Вполне возможно, что при таком стремительном росте мы столкнемся с проблемами мощности и будем вынуждены обновлять коммуникационные системы намного чаще. Однако в некоторых местах за счет новых методов фазовой модуляции и улучшенных автоматизированных подводных терминалов мощность удалось повысить на 8000%. Так что, судя по всему, к большим потокам трафика подводные провода более, чем готовы.

Оптоволоконный кабель под названием Marea через Атлантический океан: из американской Вирджинии в испанский Бильбао. Пропускная способность Marea - 160 Тбит/с. Это самый высокопроизводительный трансатлантический кабель на сегодняшний день.

Длина кабеля равняется 6600 километрам, а средняя глубина пролегания составляет 3,35 километра. Marea проложили меньше чем за два года, тогда как стандартный срок для подобных проектов составляет около пяти лет.

Первый провод, который люди проложили через океан, - трансатлантический телеграфный кабель . Первую попытку предприняли в 1857 году, но кабель порвался.

5 августа 1858 года был проложен кабель между островами Валентия и Ньюфаундленд, но уже в сентябре он вышел из строя. Долговременную связь между Европой и Америкой обеспечил лишь кабель, проложенный в 1866 году.

В 2016 году группа компаний, среди которых была Google, закончила прокладывать кабель FASTER из США в Японию. По нему можно передавать до 60 Тбит данных в секунду - на момент запуска он был самым быстрым .

Формально FASTER остается самым быстрым кабелем и сейчас - использовать Marea начнут только в начале 2018 года. Полностью свой потенциал он раскроет в 2025 году. Ожидается, что к этому времени общемировое потребление трафика вырастет в восемь раз.

В условиях такого роста новый кабель нужен Microsoft и Facebook, чтобы обеспечивать стабильную работу своих сервисов. Президент Microsoft Брэд Смит (Brad Smith) уже высказался о важности Marea:

«Marea проложили вовремя. Через трансатлантические кабели проходит на 55% больше данных, чем через кабели Тихого океана. И на 40% больше, чем по кабелям, соединяющим США и Латинскую Америку.

Безусловно, поток данных через Атлантический океан будет расти, а Marea обеспечит необходимое качество соединения для США, Испании и других стран».


Еще одна причина , по которой компании инициировали проект, - природные катаклизмы. В 2006 году на острове Тайвань произошло семибалльное землетрясение, из-за чего были повреждены восемь кабелей, соединяющих остров с Китаем. Чтобы их восстановить, понадобилось 11 кораблей и 49 дней. А ураган Сэнди в 2012 году оставил без связи Восточное побережье США. С этого момента в Microsoft решили повысить отказоустойчивость трансатлантических соединений. Получается, что как раз Сэнди объединил Facebook и Microsoft.
«Мы постоянно встречались с представителями Facebook на различных мероприятиях и поняли, что пытаемся решить одну и ту же проблему. Поэтому мы объединились и улучшили трансатлантическую сеть, спроектировав новый кабель», - рассказал Фрэнк Рей (Frank Ray), руководитель инфраструктурного направления облачных решений.

Marea состоит из восьми пар оптоволоконных кабелей, защищенных медью, пластиком и водонепроницаемым покрытием. На большей части пути кабель лежит на дне океана, а рядом с берегами закопан под землю, чтобы его не порвали корабли. Так

Оригинал взят у pro_vladimir в Кабель, порвали кабель

Вильям Томсон (лорд Кельвин) – выдающийся английский физик (1824-1907 гг.)

В историю телеграфа Томсон оказался вовлечённым в результате своих исследований токов неустановившегося режима. Что происходит в ничтожную долю секунды между моментом подключения батареи к цепи и моментом, когда ток достигает своей полной величины? - задавался Томсон вопросом в 1853 году.


Трудно представить себе исследование, которое на первый взгляд имело бы меньшее практическое значение. Однако именно оно привело к пониманию возможности связи с помощью электричества, а спустя три десятка лет – и к открытию радиоволн. Если бы Томсон смог получить хотя бы пять процентов выгоды от практического использования выведенных им уравнений, он стал бы самым богатым человеком на земле. Томсон показал, что ток может достигать своего установившегося значения двояко, в зависимости от электрической характеристики цепи. Точную аналогию этого даёт качание маятника, погруженного в какую-либо среду, создающую сопротивление. Если трение велико, маятник будет медленно опускаться и не перейдёт за точку покоя; наоборот, если трение незначительно, маятник, прежде чем перейти в состояние покоя, проделает ряд колебаний с затухающей амплитудой. Такое же явление происходит и с электрическим током, хотя в 50-х годах прошлого века подтвердить это экспериментально было не так-то легко. В наши дни с подобным явлением мы десятки раз встречаемся в быту. Включая, например, в сеть электрический прибор, мы одновременно слышим щелчок в радиоприёмнике. Это проявляется процесс установления тока в сети.

Год спустя Томсон занялся исследованием режима работы телеграфного кабеля . Нетрудно понять результаты его исследований и оценить их значение, даже если не знаешь математики. Суть этой сложной проблемы заключалась в определении времени, необходимого для того, чтобы посланный сигнал достиг приёмника на противоположном конце кабеля. Многие ошибочно полагают, будто электрический ток идёт по проводу со скоростью света, равной 300000 километров в секунду. В действительности же только при определённых условиях возможно приближение к такой скорости. В большинстве случаев ток течёт по проводам в несколько раз медленнее, чем распространяется свет.

Скорость тока в кабеле уменьшается тем сильнее, чем больше его ёмкость. К счастью для телеграфной связи, на заре её, при появлении первых наземных линий это явление не имело никакого практического значения. Их ёмкость была настолько мала, что сигналы проходили по ним без сколько-нибудь заметной задержки. Но когда были проложены подводные кабели через Па-де-Кале и Северное море, эта задержка послужила источником многих волнений. Основной причиной была окружающая кабель морская вода, обладающая токопроводящей способностью. Проникая сквозь бронепокровы вплоть до изоляции, она значительно увеличивала его электрическую ёмкость.

От скорости прохождения электрической волны по кабелю зависит в известной мере скорость телеграфной передачи. Исследования Томсона привели к появлению его знаменитого "закона квадратов", согласно которому скорость телеграфирования по кабелю обратно пропорциональна квадрату его длины. Другими словами, если увеличить длину кабеля, например, в десять раз, то скорость передачи уменьшится в сто раз. Ясно, что такое открытие имело исключительно важное значение для подводного телеграфирования на дальние расстояния.

Компенсировать уменьшение скорости передачи по мере возрастания длины линии можно было только увеличением диаметра токопроводящей жилы.

В то время когда решался вопрос прокладки первого трансатлантического телеграфного кабеля, нужно было, следуя этому закону, рассчитать оптимальное сечение токопроводящей жилы. Однако многие специалисты того времени в области телеграфа не придали этому значения. Напротив, нашлись учёные, которые пытались доказать несостоятельность этого закона. В их числе оказались Уайтхауз, Морзе, Фарадей и другие. Поэтому немудрено, что первый атлантический телеграфный кабель имел такие же шансы на успех, как мост, построенный инженерами, не понимающими законов сопротивления материалов.
Будучи только одним из директоров компании, Томсон не имел достаточной власти, чтобы настоять на своём. Он был в трудном положении, так как оказался не главным действующим лицом во время первого акта разворачивающейся драмы. Томсону оставалось лишь критиковать, на что главный режиссёр мог и не обращать внимания.

В связи с решением проложить кабель в течение лета 1857 года, у составителей проекта совершенно не оставалось времени для проведения необходимых испытаний кабеля. Доля ответственности за это падает на Сайруса Филда, кипучая энергия которого подгоняла и без того быстро развивающиеся события. Прибыв на место действия, Томсон обнаружил, что вся техническая документация на кабель уже направлена изготовителям и изменять что-либо слишком поздно. Результаты оказались плачевными. Проверяя готовый кабель, Томсон был поражён, обнаружив, что качество меди в его секциях различно, а поэтому электропроводность одних участков кабеля чуть ли не в два раза больше электропроводности других. Однако теперь оставалось лишь настоять на том, чтобы следующие секции кабеля изготовлялись из однородной и качественной меди.

Устройство кабеля было простым. Его единственная жила состояла из семи тонких медных проволок, свитых воедино и изолированных тремя слоями гуттаперчи. Если бы появилось отверстие или какое-либо иное повреждение в одном из слоев, другие два слоя обеспечили бы достаточную изоляцию. Авария могла произойти, как предполагалось, только в том совершенно невероятном случае, если бы все три слоя изоляции оказались повреждёнными в одном месте.

Изолированный таким образом сердечник кабеля обматывался затем слоем пеньки и покрывался бронёй из восемнадцати наложенных в один слой по спирали стальных проволок. Наружный диаметр кабеля составлял 16 миллиметров, а его вес 620 килограмм на 1 километр. Это обстоятельство сейчас же выдвинуло новую серьёзную проблему, поскольку общий вес кабеля достигал 2500 тонн, что превышало грузоподъёмность существовавших в то время кораблей.

Изолирование токопроводящей жилы кабеля производила компания "Гутта-Перча", а его бронирование из-за ограниченности срока выполнялось двумя фирмами – "Гласс, Эллиот и К°" и "Ньюолл и К°". Вследствие оплошности, что характерно вообще для предприятий подобного рода, бронирование обеих половин кабеля (т. е. спиральное наложение стальных проволок) оказалось сделанным в противоположных направлениях. Это обстоятельство вызвало дополнительные трудности. Ведь когда дело дойдёт до соединения двух половин кабеля посреди океана, заниматься перебронированием одной из них несколько поздновато, особенно если учесть, что длина каждой из половин равна 2000 километров.
На изготовление кабеля ушло всего шесть месяцев – срок крайне непродолжительный; к июлю 1857 года кабель был уже готов, и можно было выходить в море.

Руководить прокладкой должен был Уайтхауз. Но в последний момент этот джентльмен, сославшись на плохое здоровье, остался на берегу. Тогда дело, а с ним и все неполадки легли на плечи Томсона. Надо отдать должное благородству учёного, который согласился взять на себя эту нелёгкую задачу, причём без какого-либо материального вознаграждения. Уродливое дитя оказалось подброшенным к его порогу, но он сделал всё для того, чтобы спасти ему жизнь.
________________________________________ _______________________
В то время как шли приготовления к новой экспедиции, профессор Томсон тоже не бездействовал. Занимаясь своей обычной работой в университете, он одновременно продолжал изучать проблему телеграфной связи через Атлантику. Опытным путём он определил, что эффективность прохождения сигнала по кабелю значительно возрастёт, если к его приёмному концу подключить достаточно чувствительный детектор.

Когда к одному концу кабеля прикладывается электрический импульс (допустим, "точка" или "тире"), он появляется на другом конце не в виде мгновенного повышения напряжения. Первая реакция приёмного устройства на этот импульс – плавноподнимающаяся волна электричества; требуется некоторое время, чтобы она достигла своей максимальной величины. Если с помощью чувствительного прибора уловить самое начало этой волны, то ждать, когда кривая достигнет наивысшей точки, не нужно: сигнал будет приниматься немедленно и сразу же можно будет послать следующий. Так можно избежать искажения сигналов на приёмном конце линии, посылаемых обычным нажатием на ключ Морзе.

Проведем такую аналогию. Вода, находящаяся за дамбой, образует вертикальную стену, которую можно сравнить с первоначальным моментом импульса, посылаемого по кабелю при нажатии на ключ. Момент посылки импульса соответствует моменту внезапного разрушения дамбы: уровень воды тотчас же начинает спадать. В точке, находящейся на значительном расстоянии от дамбы, первым указанием на то, что вода хлынула за её пределы, явится почти незаметная волна; потребуется определённое время для того, чтобы она достигла своей максимальной величины. Но как только вы увидите эту первую едва заметную волну, вы тотчас поймёте, что произошло.

Следовательно, задача, которую ставил перед собой Томсон, состояла в создании чрезвычайно чувствительного детектора, который был бы способен уловить первоначальный момент появления импульса. Но Уайтхауз, обладая исключительной способностью делать не то, что нужно, занял противоположную позицию. Он продолжал настаивать на усилении импульса на передающем конце кабеля с тем, чтобы даже нечувствительные приборы, такие, как его собственный патентованный самописец, могли читать посылаемые сигналы. Последствия занятой им позиции мы увидим позже. Решение проблемы приёма сигналов было найдено, как ни странно, благодаря моноклю Томсона. Непроизвольно вращая в руке монокль, Томсон заметил, что световые блики, отражённые от стёкол, быстро бегают по комнате. Это навело его на мысль о создании зеркального, впоследствии широко известного, гальванометра.

История с моноклем Томсона кажется более достоверной, чем история с яблоком Ньютона, хотя есть все основания считать, что последняя действительно имела место. Открытия, совершённые благодаря случайным наблюдениям, никогда не бывают случайностями. Открытия обычно совершают те, кто долго и упорно думает над какой-либо проблемой и чей ум, следовательно, находится в состоянии особой восприимчивости. Сколько философов до Ньютона видело, как падает яблоко! Сколько бактериологов до Флеминга замечало непонятную плесень на культурах…! Зеркальный гальванометр Томсона, отличающийся исключительной чувствительностью и простотой конструкции, произвёл огромное впечатление на его современников.

Зеркальный гальванометр Томсона

Впоследствии выяснилось, что главной причиной поражения было упрямство Уайтхауза. Как только из Ньюфаундленда стали поступать сигналы, Уайтхауз в Валенсии сейчас же включил в цепь своё патентованное автоматически записывающее устройство. Этот прибор, удовлетворительно работающий на коротких расстояниях, был совершенно не способен регистрировать слабые и искажённые сигналы, проходящие по далеко не совершенному кабелю. Мало того, чтобы усилить посылаемые из Ирландии сигналы, Уайтхауз, вопреки возражениям Томсона, настоял на применении огромных индукционных катушек своей конструкции, имеющих полтора метра в длину; в цепи развивалось напряжение, по крайней мере, в 2000 вольт. Такое напряжение окончательно добило и без того слабый по своей конструкции кабель; оно вызвало пробой его изоляции и в конце концов полностью вывело кабель из строя. К сожалению, это поняли слишком поздно.

Лишь через девять дней с востока на запад удалось передать одно-единственное слово, а на двенадцатый день, т. е. 16 августа, стало, наконец, возможным передать текст приветствия королевы Виктории президенту Бьюкенену, которое состояло из 99 слов. Для передачи текста потребовалось шестнадцать с половиной часов, т. е. примерно столько, сколько требуется теперь для доставки сообщений через океан авиапочтой.

___________
Очередная проблема заключалась в создании кабеля новой конструкции. Теперь любая опрометчивость или поспешность были нетерпимы – слишком хорошо знали им цену. Всё подвергалось тщательному контролю; десятки образцов кабеля новых конструкций проходили всесторонние испытания. Наконец, был выбран такой кабель, который удовлетворял всем требованиям проекта.

Его токопроводящая жила была втрое больше жилы кабеля 1858 года. Значительно более мощной стала броня. Кабель мог выдерживать разрывные нагрузки в восемь тонн, т. е. на пять тонн больше, чем предыдущий кабель. Наружный диаметр нового кабеля был более 25 миллиметров. Хотя он весил в воздухе примерно 1000 килограммов на один километр (вдвое больше своего предшественника), при погружении в воду его вес значительно уменьшался. Восемнадцать километров такого кабеля могли вертикально висеть в воде, не разрываясь от собственного веса.

________________________________________ ________________________________________ __

К концу мая 1865 года было изготовлено 4200 километров кабеля. Его общий вес составлял 4500 тонн, т. е. почти в два раза больше веса кабеля 1858 года, на прокладку которого потребовались тогда два самых больших судна в мире. Теперь, благодаря счастливой случайности, единственным в мире кораблём, способным поднять такой груз, оказался безработный в то время легендарный "Грейт Истерн". Сама судьба, видимо, предоставляла ему возможность проявить себя в столь почётном деле и завоевать славу, в которой ему так долго было отказано.

Великолепный, но несчастный корабль спустили на воду семь лет назад. Он не имел коммерческого успеха и был почти заброшен вследствие бездарности его владельцев и в результате махинаций его блестящего, но беспринципного строителя – Джона Скотта Рассела.

Наши гуманитарии всё клепки на нём искали и не могли найти:
http://pro-vladimir.livejournal.com/250885.html "Невезучий гигант"

Кликабельно. И видно, что всё всё в заклепках.

________________________________________ _________________________________

Из всех творений Брюнеля "Грейт Истерн" был последним и самым замечательным. Будучи в пять раз больше самого большого судна в мире, он отнюдь не представлял собой образец гигантомании в области инженерного искусства, как утверждали некоторые. Брюнель был первым инженером-кораблестроителем, понявшим, что с увеличением размеров судна повышается его экономичность, увеличивается грузоподъёмность, причём в гораздо большей степени, чем потребность в соответствующем увеличении мощности его двигателей: первая – грузоподъёмность – зависит от куба линейных измерений судна, вторая – от их квадрата. Поняв это, Брюнель воплотил свои математические расчёты в жизнь. Он сконструировал корабль, который был достаточно велик, чтобы нести на себе, помимо полезного груза, необходимое количество угля и других запасов, обеспечивающих рейс из Англии в Австралию и обратно. А лет за десять до этого многие учёные теоретики доказывали невозможность создания парового судна, которое могло бы располагать запасами угля, достаточными даже для рейса через Атлантику.

Немного о коренных усовершенствованиях, которым подверглась конструкция кабелей 1865-1866 гг., по сравнению с конструкцией кабелей 1857-1858 гг. Ведь кабель – главное действующее лицо десятилетней трансатлантической телеграфной эпопеи.
Семь лет, с 1858 по 1865, не прошли для кабельной техники даром. Был накоплен и освоен огромный опыт, позволивший в корне изменить конструкцию кабеля, поднять на совершенно новую ступень уровень его производства и испытаний, повысить требования к материалам и к качеству сращивания отдельных строительных длин. За этот период компания "Гутта-Перча" успешно изготовила 44 подводных кабеля общей длиной около 17000 км, а фирма "Гласc, Эллиот и К°" – 30 подводных кабелей.
Был успешно проложен кабель через Средиземное море. Линия длиной 2500 км соединила телеграфом остров Мальту с Александрией. Другая линия, длиной 2250 км, пересекла Персидский залив и явилась последним эвеном телеграфной цепи, соединившей Англию с Индией.

К составлению технических условий на кабель 1865 г. были привлечены научные учреждения. Задачу сформулировали так: изготовить кабель настолько совершенный, насколько способен на это человеческий опыт.
Каковы же существенные различия кабелей 1865-66 и 1857-58 гг? Диаметр семи медных проволок, из которых скручивалась токопроводящая жила, был увеличен с 0,71 до 1,25 мм (каждой). Благодаря этому сечение жилы, а следовательно, и её электропроводность возросли в три раза. Совершенно иначе накладывалась изоляция. Хотя толщина её и осталась практически неизменной, примерно 2,8 мм, она состояла теперь не из трёх, а из четырёх тонких слоев гуттаперчи. Сама токопроводящая жила и каждый слой гуттаперчи покрывались специальным влагозащитным клейким компаундом, так называемой "мастикой Чаттертона", состоящей из трёх частей гуттаперчи, одной части смолы и одной части гудрона.
Изолированный сердечник кабеля обматывался слоем просмолённой пеньки и покрывался бронёй, на сей раз из 10 одинарных стальных мягких неоцинкованных проволок диаметром по 2,25 мм. Новым явилось то, что каждая бронепроволока была покрыта слоем пропитанной пеньки до диаметра примерно 8 мм. Делалось это с двоякой целью: во-первых, для защиты стальных проволок от коррозии и, во-вторых, для того, чтобы уменьшить вес кабеля при погружении в воду. Действительно, увеличение на 11-12 мм наружного диаметра кабеля лишь незначительно сказалось на повышении его веса, ибо удельный вес самой пеньки (примерно 0,65 г/см³) значительно меньше удельного веса меди (8,9 г/см³) и стали (7,8 г/см³), из которых были сделаны проволоки жилы и брони.

Наружный диаметр кабеля равнялся 28 мм, т. е. почти вдвое превышал диаметр кабеля 1857-1858 гг. Вдвое больше весил новый кабель в воздухе, однако в воде его вес лишь на 20 % превышал вес кабеля-предшественника. Благодаря усилению конструкции в целом разрывная прочность кабеля 1865-1866 гг. по сравнению с кабелем 1857-1858 гг. повысилась в два с лишним раза – с 3 до 7 т. Береговые концы кабеля (ирландский длиной 55 км и ньюфаундлендский длиной 9 км) имели усиленную, двойную, броню для защиты от повреждений при трении о камни во время приливов и отливов и от случайных ударов корабельных якорей. Поверх секций глубоководного бронированного кабеля накладывались подушка из пропитанной пеньки и вторая значительно более мощная броня. При этом впервые были введены три варианта брони для кабеля, прокладываемого от береговой станции до места начала укладки основной глубоководной линии: тяжёлая броня, средняя броня и лёгкая броня. Такая градация типов брони подводных кабелей связи принята и в настоящее время.

Наиболее тяжёлая броня в береговом кабеле 1865 г. состояла из 12 пучков, каждый из которых был скручен из трёх стальных проволок диаметром 8 мм. На береговой кабель 1866 г. наложили 10 одиночных стальных проволок диаметром 10 мм. Наружный диаметр этого кабеля (57 мм) был вдвое больше диаметра глубоководного кабеля.

Не совсем полно осветил А. Кларк и начало операций по прокладке трансатлантического кабеля в 1865 и 1866 гг. Оба раза кабель был изготовлен на заводе в Гринвиче. Однако "Грейт Истерн" не мог принять весь груз кабеля, находясь в русле Темзы. Поэтому его поставили в 25 км южнее Темзы в более глубоких водах залива Медуэй. Кабель перевезли на "Грейт Истерн" на вспомогательном судне. Два береговых конца погрузили каждый на свое вспомогательное судно. В частности, ирландский береговой конец прокладывали в 1865 г. "Каролина", а в 1866 г. "Уильям Керри". В бухте Валенсия один конец кабеля со вспомогательного судна при помощи лодочного понтона доставляли на берег и в здании оконечной станции подключали к сухопутной телеграфной сети. После этого вспомогательное судно, удаляясь от берега, укладывало кабель по направлению к "Грейт Истерну", на котором затем производилось сращивание концов обоих кабелей – глубоководного и берегового.
Д. Шарле

________________________________________ ________________________________________ ______

К концу августа оставшиеся в океане корабли решили изменить тактику. Они отошли на сотню – другую километров к востоку, в места несколько меньшей глубины, и поиски кабеля начались в тридцатый раз. Вновь кабель был обнаружен. На этот раз его лишь приподняли над грунтом и удерживали в таком положении до тех пор, пока "Грейт Истерн" не отошёл на некоторое расстояние и не подцепил его в другом месте. Теперь, когда кабель был зацеплен в двух точках, натяжение стало не таким большим, как раньше. После двадцати четырёх часов терпеливого и медленного подъёма кабель, наконец, оказался на борту.

Сейчас же конец кабеля разделали и завели в аппаратную для проверки, возможна ли ещё по нему связь с Ирландией. Не исключена была вероятность, что где-нибудь в кабеле имеется повреждение (как-никак он целый год пролежал под водой) и титанические усилия по его вылавливанию окажутся напрасными.

Молча ждали люди подтверждения своих надежд. Это был, пожалуй, самый напряжённый момент из всех, которые когда-либо переживали на "Грейт Истерне"… Привычная тишина аппаратной стала ещё глубже, - пишет Генри Филд, - лишь монотонно тикал хронометр. Прошло почти четверть часа, а ответа всё не было. Вдруг оператор сорвал с себя шапку, швырнул её на палубу и во всю глотку заорал: «Ура-а!» Свист, крики, шум, многократные «ура!», пальба из ракетниц были естественным и столь понятным проявлением радости, которое в эту минуту могли себе позволить эти мужественные люди…

Сцена, разыгравшаяся на другом конце кабеля, была менее бурной, но не менее волнующей. Её неплохо описали в журнале "Спектейтор":

День и ночь, в течение целого года, дежурные телеграфисты были на посту. Они наблюдали за маленьким лучом света на шкале зеркального гальванометра, с помощью которого принимались сигналы , и дважды в сутки проверяли кабель – его электропроводность и состояние изоляции по всей длине в две тысячи четыреста километров… Наблюдения за световым лучом велись, конечно, не потому, что ждали сообщений. Цель наблюдений заключалась в контроле за состоянием кабеля. Иногда, правда, из глубины океана начинали поступать какие-то дикие, бессвязные сигналы. Но это был лишь результат проявления магнитных бурь и токов земли, которые быстро отклоняли луч гальванометра, воспроизводили самые удивительные слова, а подчас даже целые предложения, лишённые всякого смысла. И вот однажды, в воскресное утро, ведущий наблюдение за гальванометром мистер Мэй заметил странное поведение сигналов. Как подсказывал ему опыт, такие сигналы обычно предшествовали началу сеанса телеграфной передачи. И в самом деле, через несколько минут неустойчивое мигание сменилось связным текстом. Вместо торопливой нечленораздельной речи безграмотного Атлантического океана кабель начал передавать чёткие сообщения. Слова «Кэннинг – Глассу», прозвучавшие после долгого перерыва, во время которого доносилось лишь угрюмое бормотание океана, должна быть, напоминали первые разумные слова, произнесённые человеком, к которому после бреда вернулось сознание.

________________________________________ ____________________________________
Насколько качественно была сделана эта работа, можно судить по результатам испытаний, которые провёл в Валенсии главный электрик Латимер Кларк. Несколько недель спустя после прокладки второго кабеля он отдал распоряжение соединить в Ньюфаундленде концы обоих кабелей. Образовалась электрическая цепь длиной более семи тысяч километров, по которой, несмотря на огромную протяжённость, Кларк вёл передачу сигналов, используя в качестве источника энергии всего лишь батарейку, сделанную из серебряного дамского напёрстка с несколькими каплями кислоты. У нас нет, к сожалению, никаких данных о том, что думал доктор Уайтхауз об этом последнем опровержении его теории "большой силы тока"; что же касается полутораметровых индукционных катушек, то им теперь оставалось только собирать пыль.

Гуманитариям не рассказывайте только, а то они расстроятся.Там же у них удавы в попугаях помноженные на чебурашку.

________________________________________ _______________________________________

Еще один забавный момент из книги.

"Последнее сообщение прошло по кабелю в 13 часов 30 минут 1 сентября. По иронии судьбы, это была телеграмма Сайрусу Филду, полученная им на банкете, устроенном в его честь в Нью-Йорке, в которой Филда просили сообщить американскому правительству, что компания готова обеспечить передачу правительственных телеграмм в Англию…
После этого кабель замолчал. Континенты, как и прежде, оказались оторванными друг от друга. Атлантический океан поглотил месяцы напряжённого труда, 2500 тонн кабеля, 350000 фунтов стерлингов.
Нетрудно представить себе реакцию общественности. Те, кто больше всех восхвалял проект, казалось, стыдились теперь своего прежнего энтузиазма. Говорили даже, что предприятие с трансатлантическим телеграфом было своего рода аферой со стороны Филда. Бостонская газета спрашивала – "Не мистификация ли это?", а один английский писатель даже утверждал, что кабель вовсе никогда и не прокладывался."

Особенно вот это:

Бостонская газета спрашивала – "Не мистификация ли это?", а один английский писатель даже утверждал, что кабель вовсе никогда и не прокладывался."

Прям кого-то напоминает.

________________________________________ __________________________

Итак, прокладка первой трансатлантической телеграфной кабельноq линии потребовала в общей сложности десяти лет (1857-1866 гг.). Было организовано пять экспедиций: в 1857 г., две экспедиции в 1858 г., в 1865 и 1866 гг. (см. карту на первом форзаце книги).

Первая длилась неделю, с 6 по 13 августа 1857 г., и прекратилась после потери 550 км кабеля. Прокладка велась американским судном "Ниагара" в одном направлении – с востока на запад.

Вторая попытка, начатая 26 июня 1858 г., закончилась на четвёртый день после трёх обрывов кабеля (снова было потеряно около 450 км кабеля).

Третья попытка, повторенная через месяц после провала второй, длилась неделю (с 29 июля по 5 августа 1858 г.) и увенчалась успехом. Линия была проложена, но проработала она только 27 дней, после чего ввиду несовершенства изоляции кабеля и особенно мест сращивания навсегда вышла из строя. Прокладка линии в обоих случаях велась двумя судами – "Агамемноном" и "Ниагарой" – одновременно и начиналась от средней точки трассы, расположенной в океане на полпути от Ирландии к Ньюфаундленду (её примерные координаты 49° северной широты и 31° западной долготы).

При четвёртой и пятой попытках, в 1865 к 1866 гг., кабель прокладывал "Грейт Истерн" от Ирландии к Ньюфаундленду. Четвёртая попытка, начатая 23 июля 1865 г., закончилась 2 августа обрывом кабеля после преодоления двух третей пути. Наконец, пятая попытка, длившаяся ровно две недели, с 13 по 27 июля 1866 г., ознаменовалась полным успехом.
Через месяц, в конце августа, была доведена до Ньюфаундленда и пущена в эксплуатацию линия прокладки 1865 года.

________________________________________ ________________________________________ ______

Раньше телеграммы, посланные в Индию, приходили туда через неделю, передаваемые по наземным линиям телеграфистами разных национальностей, и порой так искажались, что их просто невозможно было понять.

___________________________________________________________________________________

Там же много чего написано про пропускную способность кабеля.

Это если кому совсем интересно:
http://coollib.com/b/324937/read Владимир Кучин Популярная история - от электричества до телевидения (3-я полная редакция)

Всё спрятано в книгах (сатанинский смех).

Это вот они всё двигали куда-то.

Типа схема.

Типа, видео, как оно работало.

Гуманитарии будут ждать переменного тока и уверять, что нельзя по одному проводу ничего передать. Странные они.

Отрезок прибрежного кабеля из Керченского пролива.

Принято думать, что мировая информационная паутина — это нечто неосязаемое. И отчасти это так. Атмосфера планеты за последнюю сотню лет превратилась из банальной смеси азота и кислорода в густой бульон из радиоволн. Но не стоит заблуждаться — каждый бит информации, прежде чем стать эфирным электромагнитным излучением, обязательно проделывает неблизкий путь по проводам, большая часть которых проложена по океанскому дну.

Попытки соединить континенты проводами начались в первые же годы после изобретения самого телеграфа. В 1840 году английский профессор Уитстон представил на рассмотрение парламента проект прокладки подводного кабеля от Дувра к французскому берегу, но не получил согласия законодателей и, соответственно, денег.

Через два года изобретатель наиболее распространенной версии телеграфа Сэмюэл Морзе связал кабелем берега бухты Нью-Йорка и передал по нему сообщение. Тогда же он предсказал, что через недолгое время телеграф свяжет Старый Свет с Новым. Через десятилетие после этого компания братьев Джона и Джекоба Бреттов запустила телеграфное сообщение между Англией и Францией, проложив одножильный медный провод, одетый в гуттаперчу и стальную оплетку, под водами Ла-Манша.


Nexans Skaggerak — специализированное судно, построенное в 1976 году новрежской компанией Øgreys Mekaniske Verksted для подводной прокладки силовых кабелей и шлангопроводов. В марте 2010 года модернизирован в ремонтных доках Cammell Laird в Биркенхеде, Англия. Судно было распилено поперек, и между двумя его половинками была вварена дополнительная секция длиной 12.5 метра. Также на Skagerrak установили новую поворотную платформу. Справа на фото — силовой кабель, предназначенный для укладки в море, поступает с берега по специальному транспортеру, исключающему слишком резкие перегибы, и складируется в специальном отсеке, цилиндрической формы. Современный подводный силовой кабель может иметь диаметр порядка 100 мм. Метр такой «ниточки» вполне может потянуть на пару десятков килограмм, поэтому немудрено, что для контроля укладки требуются несколько дюжих рабочих. Снизу на фото — поворотная платформа, установленная на Skagerrak, имеет диаметр 29 метров и полезную нагрузку 7000 тонн, при объеме 2000 кубометров.

Человеком, соединившим мгновенной связью Старый и Новый Свет, стал американский предприниматель Сайрус Филд, основавший в 1854 году «Нью-Йоркско-Ньюфаундлендскую и Лондонскую телеграфную компанию». Вице-президентом стал известный нам Сэмюэл Морзе. Укладка кабеля началась в 1857 году при содействии правительств США и Великобритании, предоставивших для использования в роли кабелеукладчиков военные корабли: пароходофрегат «Ниагара» и парусно-паровой линкор «Агамемнон». На дно Атлантики было уложено 620 км кабеля, после чего он оборвался.

Следующая попытка была предпринята через год — «Ниагара» и «Агамемнон», соединив концы кабеля посередине океана, отправились в разные стороны. После нескольких обрывов корабли вернулись в Ирландию для пополнения запасов. Следующий старт — в июле того же года — принес успех, на который уже мало кто надеялся. Но… телеграф проработал около месяца и замолчал.


Неутомимый Филд вернулся к своей затее в 1865 году, зафрахтовав в качестве кабелеукладчика крупнейшее судно той поры — «Грейт Истерн». С него на дно было уложено три четверти линии, когда 2 августа кабель вновь оборвался и ушел на дно. Наконец, в 1866 году телеграфная линия пересекла Атлантику, а в самом начале прошлого века — безбрежный Тихий океан.

Вплоть до 30-х годов XX века главной проблемой межконтинентальных коммуникаций было низкое качество изоляции. Основными материалами для ее изготовления служили натуральные полимеры каучук и гуттаперча, сверху кабель обвивался броней из стальной проволоки, а на прибрежных участках броня иногда делалась двухслойной для защиты от якорей и рыбацких снастей.


Возможность мгновенной передачи данных на тысячи километров сейчас воспринимается как должное — уже полторы сотни лет никто не удивляется. Но за очевидностью стоят немаленькие технологические ухищрения. Всемирная Сеть — это не только пропускная способность и протяженность, но еще масса и объем. Чтобы убедится в этом достаточно поглядеть на барабан, в котором хранится свернутый кабель. Размеры этой «катушки» вполне соответствуют масштабам решаемых задач. Современный кабельный барабан на специализированном судне — это тысячи тонн и кубометров плюс специальные системы для укладки кабеля и его размотки. А барабанов таких на флагманах «проводного флота» — по три-четыре. Конструкция должна обеспечить намотку, размотку и хранение кабеля без перегибов, сильных нагрузок и прочего экстрима. Именно с этим связан большой диаметр «катушки» — современные подводные провода не рассчитаны на сколь-нибудь серьезный изгиб, поэтому сворачивать моток слишком туго нельзя — сломается.

Сегодняшние оптоволоконные кабели имеют многоуровневую защиту от едкой морской воды и механических повреждений. Пучок передающих волокон «плавает» в гелевом гидрофобном наполнителе внутри медной или алюминиевой трубки, покрытой слоем эластичного поликарбоната и алюминиевым экраном. Следующий слой- скрученная стальная проволока, обернутая майларовой лентой. Снаружи кабель одет в полиэтиленовую «рубашку». Другой вариант — кабель с профилированным несущим сердечником. В такой схеме до восьми оптических пар помещаются внутри каждого из шести экструдированных в полиэтиленовом шнуре каналов, заполненных гелем. Пары защищены навитой майларовой лентой, медным экраном и толстой полиэтиленовой оплеткой. В центре шнура проложена толстая стальная проволока для придания кабелю жесткости. Гарантия на подводные кабели связи — не менее 25 лет.

Откуда разматывают интернет

Первая попытка использовать подводный кабель для передачи сигнала — тогда еще не телеграфного — была предпринята в России в 1812 году П. Шиллингом для подрыва с берега морских мин, снабженных электрическим запалом.
Первая попытка проложить телеграфный кабель под водой была предпринята в 1839 году в Индии. Восточно-Индийская телеграфная компания проложила кабель по дну реки Хугли, неподалеку от Калькутты. К сожалению, данные об использовании линии до нас не дошли.
Первый трансатлантический кабель, проложенный между в 1858 году, прослужил всего около месяца. Кабели 1865−66 гг служили без ремонта около пяти лет, а ряд секций кабеля 1873 года (Ирландия — Ньюфаундленд) — около девяноста лет.
К 1900 году в мире было проложено 1750 подводных телеграфных линий общей протяженностью около 300 тысяч километров. Первая телефонная линия через Атлантику была уложена в 1956 году.
Самый длинный подводный силовой кабель проложен по дну Северного моря между г. Эемсхавен (Нидерланды) и Феда (Норвегия). Длина линии NorNed — 580 км, она рассчитана на 700 МВт. Эксплуатация началась в мае 2008 года.
Длина линии Unity, соединившей в 2010 году Японию (город Чикура) с западным побережьем США (Лос-Анжелес) по дну Тихого океана, составляет 10 тыс. км, пропускная способность — 7.68 Тбит/с.

Высоковольтные магистрали, связывающие с Большой землей острова, нефтяные платформы и ветряные электростанции, защищены еще лучше коммуникационных. Проводниками обычно служат три медные жилы, каждая из которых экранирована полупроводниковой лентой и толстым слоем изолятора из сшитого полиэтилена. Поверх изолятора проложен еще один экран, навита водонепроницаемая лента. Снаружи каждая токопроводящая жила закрыта герметичной свинцовой оболочкой и антикоррозионной полиэтиленовой оплеткой. Если в качестве основного изолятора используется этиленпропиленовая резина (ЭПР), свинцовый слой зачастую не используется в целях облегчения конструкции. В состав современного силового кабеля обязательно включается как минимум одна оптоволоконная пара для передачи данных. Проводники и оптоволокно заливаются полипропиленом или полиэтиленом, покрываются лентой-усилителем, полимерной оплеткой, броней из стальной проволоки и еще одним слоем из полиэтиленовой пряжи толщиной не менее 4 мм. Как правило, такие кабели служат верой и правдой десятки лет. Быстрое развитие морской ветроэнергетики и нефтегазодобычи привело к тому, что в настоящее время все имеющиеся на планете восемь заводов по производству подводного силового кабеля работают на пределе мощности. И спрос на их продукцию только растет.


Итальянский кабелеукладчик Gliulio Verne

Дело техники

Итак, мировой спрос на трафик просто сумасшедший — по данным агентства Telegeography, с 2007 года он растет на 100% в год. Подводные линии электропередач разрастаются вместе с альтернативной энергетикой. Отличный кабель у нас имеется. Остается только соединить им острова и континенты.

Создание подводной кабельной системы — сложнейшая операция, выполняемая профессионалами экстра-класса в экстремальных условиях с хирургической точностью. Первым делом выявляется оптимальный маршрут. С помощью специальных судов, оснащенных гидролокаторами бокового обзора, подводными аппаратами с дистанционным управлением и акустическими профилометрами Доплера, океанологи исследуют участки дна, на которые вскоре ляжет нить. Тщательно фиксируются и анализируются высотный профиль маршрута, состав донного грунта, сейсмическая активность зоны, наличие и характер течений, естественных и искусственных препятствий в коридоре прокладки. По полученным данным составляется конфигурация линии и технологическая карта прокладки. На критически важные точки маршрута выставляются бакены, оснащенные GPS-передатчиками и радиомаяками. Лишь после этого в дело вступают суда-кабелеукладчики.


Cable Innovator водоизмещением 10557 тонн — самое большое в мире судно, созданное для прокладки оптического кабеля. Построено в 1995 году на финских верфях Kvaerner Masa, принадлежит компании Global Marine Systems. Три 17-метровых барабана могут вместить по 2333 тонны кабеля каждый. 60 дней корабль с экипажем в восемь десятков человек может функционировать в режиме полной автономности, разматывая кабельную линию на скорости до 6.6 узлов (чуть больше 12 км/ч).

Серьезных различий между кабельными судами для прокладки силовых и коммуникационных линий нет. Разница лишь в специфической оснастке. Кроме того, «силовики» обычно работают в прибрежных районах, а оптику тянут на тысячи километров в открытом море. Самые большие и производительные в мире суда, специализирующиеся на высоковольтных магистралях, — норвежский укладчик Skagerrak, принадлежащий компании Nexans, и Giulio Verne итальянской корпорации Prysmian Group. Cable Innovator из флотилии Global Marine Systems водоизмещением 10557 т не имеет равных среди «связистов» — он может взять на борт 8500 км оптического кабеля. Крупнейшие флотилии кабельных судов базируются в Тихом океане — восемь судов трудятся на американскую компанию SubCom и столько же на ее японского конкурента NEC. Характерные особенности кабелеукладчиков — малая рабочая осадка, не превышающая 10 м, обязательное оснащение системами динамического позиционирования и гидроакустической ориентации, а также чрезвычайно чувствительные движители, позволяющие регулировать скорость с аптекарской точностью. Современный кабелеукладчик оснащен многошкивной кабельной машиной-лебедкой, развивающей тягу до 50 т, спускающей кабель в воду со скоростью порядка 1,5 км/ч. Кроме того, на борту имеются краны для погружения и подъема подводных аппаратов, устройства для сращивания и резки, водолазное оборудование и многое другое.


Схематическая карта первого трансатлантического кабеля, проложенного по дну летом 1858 года. Из-за несовершенства конструкции, плохой изоляции и использования слишком большого напряжения для передачи, линия связи тогда проработала всего около месяца, причем качество и, соответственно, скорость связи все время были ниже всякой критики. 1 сентября 1858 года через Атлантику было передано последнее сообщение, после чего континенты вновь оказались разъединенными. К 1861 году в различных частях света были проложены около 20 тысяч километров подводного кабеля, но в рабочем состоянии было не более четверти из них. Америка и Европа были окончательно соединены телеграфом 27 июля 1866 года, после чего связь уже никогда не прерывалась более, чем на несколько часов.

Аренда такого чуда техники тянет примерно на $100000 в сутки, тем не менее спрос превышает предложение. К примеру, кабелеукладчик Tyco Resolute компании SubCom, цилиндрические ангары которого вмещают 2500 км оптического кабеля, обеспечен работой на несколько лет вперед. То же можно сказать и о Skagerrak. Да и остальные не сидят без работы: рыболовные снасти, корабельные якоря, оползни и землетрясения, повреждающие подводные магистрали, держат эскадру кабельных судов в постоянной боевой готовности. Зафиксированы случаи разрыва кабеля из-за укусов акул и даже хищения десятков километров силовых линий пиратами. Только в Атлантике выполняется до 50 ремонтных операций в год. Но это дело техники…


На дно

Укладка любого кабеля начинается с суши. Эту ювелирную операцию обычно проводит команда опытных водолазов. Кабелеукладчик подходит к берегу поближе, встает по заданному курсу и стравливает на воду требуемый отрезок «нитки», соединенный с вытяжным тросом, предварительно заведенным с берега через врытую в грунт длинную трубу. В ходе этой операции вытравленный кабель висит на поплавках во избежание критических перегибов и спутывания. Процесс вывода троса и кабеля на соединительный щиток контролируется визуально посредством телекамер — починить этот отрезок линии впоследствии будет гораздо сложнее, чем какой-либо другой. Проверка целостности кабеля подачей сигнала (или напряжения, если он силовой) происходит во время укладки в постоянном режиме. Если все в норме — труба замуровывается со стороны моря, из нее откачивается вода, а вместо нее внутрь подается антикоррозийная смесь ингибиторов, биоцидов, убивающих водные бактерии, и раскислителя, поглощающего кислород. Береговая укладка, несмотря на кажущуюся простоту, — самый долгий этап работ. Команде Бьорна Ладегаарда, инженера компании Nexans, понадобилось целых три недели, чтобы в январе этого года подцепить к сети силовую ветку на пляжах Майорки на участке всего около 500 м!


В открытом море все проще, но и там свои трудности. Рельеф морского дна редко бывает достаточно удобным для так называемой свободной укладки, когда «нитка» опускается прямо на грунт. Так, силовую магистраль между Испанией и Балеарами пришлось зарывать на участке 283 км, в том числе на глубинах более километра. Еще 23 км были вырублены в скале!

В подводных дебрях незаменимые помощники инженеров — глубоководные аппараты с дистанционным управлением через шланг-кабель. Специалисты компании Nexans имеют в своем распоряжении три машины. Маленький и юркий CapTrack с комплексом датчиков, трансмиттером GPS, мощными прожекторами и телекамерами предназначен для оперативного мониторинга и точной укладки «нитки» на дно. На участках с экстремально сложным рельефом используется подводный бульдозер Spider с дополнительным «вооружением» в виде буровой головки, водометов и мощного насоса. Рука-манипулятор Spider может оснащаться целой кучей жутких инструментов, предназначенных для разрушения. Большую же часть работы на маршрутах выполняет траншейная машина Capjet со своим плугом-водометом. Вскрытый грунт постоянно откачивается насосом из полутораметровой траншеи и подается за корму Capjet, засыпая уложенный кабель.


Когда на пути прокладки оказываются более серьезные препятствия, инженеры используют арочные системы перехода. Кабель в специальном рукаве подвешивается на заякоренных герметичных стальных баллонах, наполненных воздухом. При наличии «попутных» трубопроводов кабель закрепляется на них специальными клипсами. Если через трубы приходится «перешагивать», применяются бетонные мостики или защитные рукава, укладываемые в нужном месте подводными аппаратами. В зонах с устойчивыми донными течениями кабель, как и любое цилиндрическое тело, подвергается разрушительному воздействию вихревых вибраций. Постепенно эти незаметные глазу высокочастотные колебания разрушают даже железобетонные балки. Для борьбы с этой бедой «нитка» одевается в пластиковое спиралевидное «оперение». Чтобы предотвратить перетирание изоляции о скалистый грунт, используются мягкие полиуретановые маты или ленточные протекторы. Все операции по удлинению, разветвлению кабеля, установке на него усилителей и контрольной аппаратуры производятся на судне непосредственно перед укладкой данного участка на дно. На финише маршрута кабелеукладчик повторяет операцию по выводу магистрали на берег. После этого линия тестируется и запускается в эксплуатацию.

А не проще ли запустить на орбиту пару спутников, спросите вы? Не проще. Скорости не те — мегабиты в секунду для XXI века уже не годятся. Да и гигабиты — тоже. Подводные терабиты совсем другое дело…

Получил от королевы Виктории поздравительную телеграмму и отправил ей ответное послание. Первый официальный обмен сообщениями по недавно проложенному трансатлантическому телеграфному кабелю был отмечен парадом и фейерверком над нью-йоркской ратушей. Празднества были омрачены случившимся по этой причине пожаром, а через 6 недель кабель вышел из строя. Правда, и до этого работал он не очень хорошо - послание королевы передавалось в течение 16,5 часа.

От идеи до проекта

Первое предложение, касающееся телеграфа и Атлантического океана, представляло собой ретрансляционную схему, в которой сообщения, доставляемые кораблями, должны были рассылаться телеграфом из Ньюфаундленда в остальную часть Северной Америки. Проблемой являлось строительство телеграфной линии по сложному рельефу острова.

Обращение за помощью инженера, отвечающего за проект, привлекло впоследствии ставшего незаменимым для проекта трансатлантического кабеля американского бизнесмена и финансиста Сайруса Филда. В ходе работы он пересек океан более 30 раз. Несмотря на неудачи, с которыми столкнулся Филд, его энтузиазм привел к успеху.

Бизнесмен немедленно ухватился за идею трансатлантической телеграфной передачи. В отличие от наземных систем, в которых импульсы регенерировались реле, трансокеанская линия должна была обойтись одним кабелем. Филд получил заверения в возможности передачи сигнала на большие расстояния от и Майкла Фарадея.

Уильям Томпсон дал этому теоретическое обоснование, в 1855 г. опубликовав закон обратных квадратов. Время нарастания импульса, проходящего через кабель без индуктивной нагрузки, определяется постоянной времени RC проводника длиной L, равной rcL 2 , где r и с - сопротивление и емкость на единицу длины соответственно. Томсон также внес вклад в технологию работы подводного кабеля. Он усовершенствовал зеркальный гальванометр, в котором малейшие отклонения зеркала, вызванные током, усиливались проекцией на экран. Позже он изобрел устройство, регистрирующее сигналы чернилами на бумаге.

Технология подводных кабелей была усовершенствована после появления в 1843 году в Англии смола дерева, произрастающего на Малайском полуострове, представляла собой идеальный изолятор, поскольку была термопластичной, смягчалась при нагреве и возвращалась в твердую форму после охлаждения, облегчая изоляцию проводников. В условиях давления и температуры на дне океана ее изоляционные свойства улучшались. Гуттаперча оставалась основным материалом изоляции подводных кабелей до открытия полиэтилена в 1933 году.

Проекты Филда

Сайрус Филд возглавлял 2 проекта, первый из которых потерпел неудачу, а второй завершился успехом. В обоих случаях кабели состояли из одного 7-жильного провода, окруженного гуттаперчей и бронированного стальной проволокой. Защиту от коррозии обеспечивала просмоленная пенька. Морская миля кабеля образца 1858 г. весила 907 кг. Трансатлантический кабель 1866 г. был тяжелее, 1622 кг/миля, но поскольку его объем был больше, то в воде он весил меньше. Прочность на растяжение составляла 3 т и 7,5 т соответственно.

Все кабели имели один проводник с возвратом по воде. Хотя у морской воды сопротивление меньше, она подвержена блуждающим токам. Питание осуществлялось с помощью химических источников тока. Например, проект 1858 г. имел 70 элементов по 1,1 В каждый. Эти уровни напряжения в сочетании с неправильным и неосторожным хранением привели к выходу глубоководного трансатлантического кабеля из строя. Применение зеркального гальванометра позволило в последующих линиях использовать более низкие напряжения. Поскольку сопротивление составляло приблизительно 3 Ом на морскую милю, при расстоянии 2000 миль могли проводиться токи порядка миллиампера, достаточные для зеркального гальванометра. В 1860 годах был введен биполярный телеграфный код. Точки и штрихи кода Морзе были заменены импульсами противоположной полярности. Со временем были разработаны более сложные схемы.

Экспедиции 1857-58 и 65-66 гг.

Для прокладки первого трансатлантического кабеля путем выпуска акций было собрано 350 000 фунтов стерлингов. Американское и британское правительства гарантировали возврат инвестиций. Первая попытка была предпринята в 1857 г. Для перевозки кабеля потребовались 2 парохода, «Агамемнон» и «Ниагара». Электрики одобрили способ, при котором один корабль укладывал линию с береговой станции с последующим соединением второго конца с кабелем на другом судне. Преимущество заключалось в том, что при этом сохранялась непрерывная электрическая связь с берегом. Первая попытка закончилась неудачей, когда на расстоянии 200 миль от берега вышло из строя оборудование для укладки кабеля. Он был потерян на глубине 3,7 км.

В 1857 году главным инженером «Ниагары» Уильямом Эвереттом было разработано новое оборудование для укладки кабеля. Заметным улучшением стал автоматический тормоз, который срабатывал, когда натяжение достигало определенного порога.

После сильного шторма, который чуть не потопил «Агамемнон», корабли встретились посреди океана и 25 июня 1858 г. начали прокладывать трансатлантический кабель снова. «Ниагара» двигалась на запад, а «Агамемнон» - на восток. Было сделано 2 попытки, прерванные повреждением кабеля. Корабли вернулись в Ирландию за его заменой.

17 июля флот снова отправился на встречу друг с другом. После незначительных сбоев операция прошла успешно. Идя с постоянной скоростью в 5-6 узлов, 4 августа «Ниагара» вошла в Тринити-Бэй о. Ньюфаундленд. В тот же день «Агамемнон» прибыл в Бухту Валентия в Ирландии. Королева Виктория отправила описанное выше первое приветственное сообщение.

Экспедиция 1865 г. завершилась неудачей в 600 милях от Ньюфаундленда, и только попытка в 1866 г. была успешной. Первое сообщение по новой линии было отправлено из Ванкувера в Лондон 31 июля 1866 г. Кроме того, был найден конец кабеля, потерянного в 1865 г., и линия была также успешно завершена. Скорость передачи составила 6-8 слов в минуту при стоимости 10$/слово.

Телефонная связь

В 1919 г. американская компания AT&T инициировала исследование возможности прокладки трансатлантического телефонного кабеля. В 1921 г. была проложена глубоководная телефонная линия между Ки-Уэстом и Гаваной.

В 1928 г. было предложено проложить кабель без повторителей с единственным голосовым каналом через Атлантический океан. Высокая стоимость проекта (15 млн $) в разгар Великой депрессии, а также усовершенствования в области радиотехнологий прервали проект.

К началу 1930 годов развитие электроники позволило создать подводную кабельную систему с повторителями. Требования к конструкции промежуточных усилителей линии связи были беспрецедентными, поскольку устройства должны были бесперебойно работать на дне океана в течение 20 лет. К надежности компонентов, в частности электронных ламп, предъявлялись строгие требования. В 1932 г. уже были электролампы, которые успешно прошли испытание в течение 18 лет. Использовавшиеся радиотехнические элементы значительно уступали лучшим образцам, но были очень надежными. В итоге ТАТ-1 проработала 22 года, и ни одна лампа не вышла из строя.

Еще одну проблему представляла укладка усилителей в открытом море на глубине до 4 км. При остановке корабля для сброса повторителя на кабеле со спиральной броней могут появиться перегибы. В итоге был использован гибкий усилитель, который мог укладываться оборудованием, предназначенным для телеграфного кабеля. Однако физические ограничения гибкого ретранслятора ограничивали его пропускную способность 4-проводной системой.

Почта Британии разработала альтернативный подход с жесткими ретрансляторами гораздо большего диаметра и пропускной способностью.

Реализация TAT-1

Проект был возобновлен после Второй мировой войны. В 1950 году гибкая технология усилителя была протестирована системой, связывающей Ки-Уэст и Гавану. Летом 1955 и 1956 г. первый трансатлантический был проложен между Обаном в Шотландии и Кларенвиллем на о. Ньюфаундленд, значительно севернее существующих телеграфных линий. Каждый кабель имел длину около 1950 морских миль и насчитывал 51 повторитель. Их число определялось максимальным напряжением на клеммах, которое могло бы использоваться для питания, не влияя на надежность высоковольтных компонентов. Напряжение составляло +2000 В на одном конце и -2000 В на другом. Полоса пропускания системы, в свою очередь, определялась количеством повторителей.

В дополнение к повторителям было установлено 8 подводных уравнителей на восточно-западной линии и 6 на западно-восточной. Они корректировали накопленные сдвиги в полосе частот. Хотя общие потери в полосе пропускания 144 кГц составляла 2100 дБ, использование уравнителей и повторителей сократило это значение до менее 1 дБ.

Начало работы TAT-1

В первые 24 ч после запуска 25 сентября 1956 г. было сделано 588 звонков из Лондона и США и 119 из Лондона в Канаду. ТАТ-1 сразу утроила пропускную способность трансатлантической сети. Полоса частот кабеля составляла 20-164 кГц что позволяло иметь 36 голосовых каналов (по 4 кГц), 6 из которых были разделены между Лондоном и Монреалем и 29 - между Лондоном и Нью-Йорком. Один канал предназначался для телеграфа и сервисного обслуживания.

Система также включала наземную связь через Ньюфаундленд и подводную с Новой Шотландией. Эти две линии состояли из одного кабеля длиной 271 морских миль с 14 жесткими репитерами, спроектированными почтой Великобритании. Общая емкость составила 60 голосовых каналов, 24 из которых связывали Ньюфаундленд и Новую Шотландию.

Дальнейшие усовершенствования TAT-1

Линия TAT-1 обошлась в 42 млн долларов США. Цена в 1 млн $ за канал стимулировала разработку терминального оборудования, которое бы использовало пропускную способность более эффективно. Количество голосовых каналов в стандартном диапазоне частот 48 кГц было увеличено с 12 до 16 путем сокращения их ширины с 4 до 3 кГц. Другой инновацией была временная интерполяция речи (TASI), разработанная в Bell Labs. TASI позволила удвоить количество голосовых цепей благодаря паузам в речи.

Оптические системы

Первый трансокеанский оптический кабель ТАТ-8 вступил в строй в 1988 г. Повторители регенерировали импульсы путем преобразования оптических сигналов в электрические и обратно. Две рабочие пары волокон работали со скоростью 280 Мбит/с. В 1989 г. благодаря этому трансатлантическому интернет-кабелю компания IBM согласилась финансировать линию уровня Т1 между Корнуэльским университетом и ЦЕРН, что значительно улучшило связь между американской и европейской частями раннего Интернета.

К 1993 г. во всем мире эксплуатировалось более 125 тыс. км TAT-8. Эта цифра почти соответствовала общей длине аналоговых подводных кабелей. В 1992 г. вступила в строй TAT-9. Скорость на волокно была увеличена до 580 Мбит/с.

Технологический прорыв

В конце 1990 годов развитие оптических усилителей, легированных эрбием, привело к квантовому скачку в качестве подводных кабельных систем. Световые сигналы с длиной волны около 1,55 мкм стало возможным усиливать напрямую, и пропускная способность перестала ограничиваться скоростью электроники. Первой оптически усиленной системой, проведенной через Атлантический океан, была TAT 12/13 в 1996 году. Скорость передачи на каждой из двух пар волокон составила 5 Гбит/с.

Современные оптические системы позволяют передавать такие большие объемы данных, что избыточность имеет решающее значение. Как правило, современные волоконно-оптические кабели, такие как TAT-14, состоят из 2-х отдельных трансатлантических кабелей, которые являются частью кольцевой топологии. Две другие линии соединяют береговые станции с каждой стороны Атлантического океана. Данные направляются по кольцу в обоих направлениях. В случае обрыва кольцо самовосстанавливается. Трафик переводится на запасные пары волокон в рабочих кабелях.