Синтез сверхтяжелых элементов. О сверхтяжелых элементах

Атомное ядро это система нуклонов, состоящая из Z протонов и N нейтронов, связанных ядерным взаимодействием. Энергия связи атомного ядра в жидко-капельной модели описывается формулой Бете-Вайцзеккера [3, 4 ]. В зависимости от времени жизни и соотношения между Z и N атомные ядра делятся на стабильные и радиоактивные. Явление радиоактивности было открыто А.А. Бекерелем в 1896 г., который обнаружил неизвестное ранее излучение, которое испускали соли урана .
В 1898 г. Пьер и Мария Кюри выделили новые элементы, радий Ra (Z = 88) и полоний Po (Z = 84) , также обладающие свойством радиоактивности. Э. Резерфорд в 1898 г. показал, что излучение урана имеет две компоненты: положительно заряженные α-частицы (ядра 4 He) и отрицательно заряженные β-частицы (электроны) [6, 9 ]. В 1900 году П. Виллардом было открыто γ-излучение урана .
Стабильные ядра расположены в так называемой долине стабильности (рис. 1). Отношение N к Z вдоль линии стабильности зависит от масового числа А = N + Z:

N/Z = 0.98 + 0.015А 2/3 . (1)

Рис. 1. NZ диаграмма атомных ядер

В настоящее время известно около 3500 атомных ядер, число стабильных ядер около 300. Слева от долины стабильности располагаются радиоактивные ядра, распадающиеся в результате β + -распада и е-захвата. При удалении от долины стабильности в сторону ядер, перегруженных протонами, уменьшается их период полураспада. Граница В р (N,Z) = 0 (В р (N,Z) энергия отделения протона в ядре (N,Z)) ограничивает область существования ядер слева.
При продвижении от долины стабильности в сторону ядер, перегруженных ней­тронами, также происходит уменьшение периода полураспада ядер. Справа область существования ядер ограничена соотношением В n (N,Z) = 0 (В n (N,Z) энергия отделения нейтрона в ядре (N,2)). Вне границ
В р (N,Z) = 0 и (В n (N,Z) = 0 атомные ядра существовать не могут, так как их распад происходит за характерное ядерное время τ яд = 10 -22 с.
Область ядер с протонным избытком экспериментально изучена практически пол­ностью вплоть до границы В р (N,Z) = 0. Что касается ядер с избытком нейтронов, то (за исключением легких ядер) область экспериментально обнаруженных ядер лежит довольно далеко от границы В n (N,Z) = 0. В этой области может располагаться еще около 2500 − 3000 неизвестных нам ядер.

Академик Г.Н. Флеров:
Ценность информации, полученной из исследования изотопа, находящегося далеко от области стабильности, значительно больше того, что мы узнаем, изучая изотопы, находящеся вблизи этой области. Это общий методологический подход, который используется и физиками, и химиками,
изучать свойства вещества в экстремальных условиях его существования. Изотопы, далекие от области (β-стабильности, являются предельными в том отношении, что в одном случае, когда протонов мало и число нейтронов относительно велико, основную роль играют ядерные силы; в другом случае, когда имеется избыток протонов, весьма существенную роль играют кулоновские силы отталкивания, вплоть до того, что становится возможным радиоактивный распад ядер с испусканием протонов.
В связи с этим становится понятным наш особый интерес к изучению ядер трансурановых элементов, где кулоновские силы настолько велики, что преодолевают ядерные силы притяжения. Почти исчезает потенциальный барьер, удерживающий в равновесии ядро как целое, и оно делится на осколки. В то же время специфические ядерные эффекты, связанные с внутренней структурой ядра, могут быть выражены чрезвычайно сильно. Именно в этой области элементов открыт новый вид ядерной изомерии изомерия формы. Здесь же возможен ряд других интересных явлений, связанных, например, с наличием второго минимума в энергии деформации ядра.

Доклад в Оргкомитет конференции ЮНЕСКО,
посвященный 100-летию создания таблицы Менделеева .

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели ядра предсказывают исчезновение барьера деления для ядер с Z 2 /А ≈ 41 (примерно 104 элемент) . В проблеме существования сверхтяжелых ядер следует выделить два круга вопросов.

  • Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N? Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  • Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения составного ядра и каналы снятия возбуждения образующихся ядер?

Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z, N = 2, 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным типам радиоактивного распада. Это явление объясняется в рамках модели ядерных оболочек − магические числа соответствуют заполненным ядерным оболочкам [12, 13 ]. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области NZ- диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. Применение метода

ЕСТЬ ЛИ ПРЕДЕЛ
ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Д.И.МЕНДЕЛЕЕВА?

ОТКРЫТИЕ НОВЫХ ЭЛЕМЕНТОВ

П роблема систематизации химических элементов привлекла к себе пристальное внимание в середине XIX в., когда стало ясно, что многообразие окружающих нас веществ является результатом разных сочетаний сравнительно малого числа химических элементов.

В хаосе элементов и их соединений великий русский химик Д.И.Менделеев первым навел порядок, создав свою периодическую таблицу элементов.

1 марта 1869 г. считается днем открытия периодического закона, когда Менделеев сообщил о нем научному сообществу. Известные в то время 63 элемента ученый разместил в своей таблице таким образом, что главные свойства этих элементов и их соединений менялись периодически по мере увеличения их атомной массы. Наблюдаемые изменения свойств элементов в горизонтальном и вертикальном направлениях таблицы следовали строгим правилам. Например, ярко выраженный у элементов Iа группы металлический (основный) характер с увеличением атомной массы убывал по горизонтали таблицы и возрастал по вертикали.

Опираясь на открытый закон, Менделеев предсказал свойства нескольких еще не открытых элементов и их место в периодической таблице. Уже в 1875 г. был открыт «экаалюминий» (галлий), еще через четыре года – «экабор» (скандий), а в 1886 г. – «экасилиций» (германий). В последующие годы таблица Менделеева служила и до сих пор служит ориентиром в поисках новых элементов и предвидении их свойств.

Однако ни сам Менделеев, ни его современники не могли ответить на вопрос, в чем причины периодичности свойств элементов, существует ли и где проходит граница периодической системы. Менделеев предчувствовал, что причина представленной им взаимосвязи между свойствами и атомной массой элементов кроется в сложности самих атомов.

Лишь спустя много лет после создания периодической системы химических элементов в работах Э.Резерфорда, Н.Бора и других ученых было доказано сложное строение атома. Последующие достижения атомной физики позволили решить многие неясные проблемы периодической системы химических элементов. Прежде всего оказалось, что место элемента в периодической таблице определяется не атомной массой, а зарядом ядра. Стала понятной природа периодичности химических свойств элементов и их соединений.

Атом стали рассматривать как систему, в центре которой находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. При этом электроны группируются в околоядерном пространстве и движутся по определенным орбитам, входящим в электронные оболочки.

Все электроны атома принято обозначать с помощью чисел и букв. Согласно этому обозначению главные квантовые числа 1, 2, 3, 4, 5, 6, 7 относятся к электронным оболочкам, а буквы s , p , d , f , g – к подоболочкам (орбитам) каждой оболочки. Первая оболочка (считая от ядра) имеет только s -электроны, вторая может иметь s - и p - электроны, третья – s -, p - и d -электроны, четвертая – s -,
p -, d - и f - электроны и т.д.

Каждая оболочка может вместить вполне определенное число электронов: первая – 2, вторая – 8, третья – 18, четвертая и пятая – по 32. Этим определяется число элементов в периодах таблицы Менделеева. Химические свойства элементов обусловлены строением внешней и предвнешней электронных оболочек атомов, т.е. тем, сколько электронов они содержат.

Ядро атома состоит из положительно заряженных частиц – протонов и электрически нейтральных частиц – нейтронов, часто называемых одним словом – нуклоны. Порядковый номер элемента (его место в периодической таблице) определяется числом протонов в ядре атома данного элемента. Массовое число А атома элемента равно сумме чисел протонов Z и нейтронов N в ядре: A = Z + N . Атомы одного и того же элемента с разным числом нейтронов в ядре являются его изотопами.

Химические свойства разных изотопов одного и того же элемента не отличаются друг от друга, а ядерные – изменяются в широких пределах. Это проявляется прежде всего в стабильности (или нестабильности) изотопов, которая существенно зависит от соотношения числа протонов и нейтронов в ядре. Легкие стабильные изотопы элементов обычно характеризуются равным числом протонов и нейтронов. С ростом заряда ядра, т. е. порядкового номера элемента в таблице, это соотношение меняется. У стабильных тяжелых ядер нейтронов почти в полтора раза больше, чем протонов.

Как и атомные электроны, нуклоны также образуют оболочки. С увеличением числа частиц в ядре последовательно заполняются протонные и нейтронные оболочки. Ядра с полностью заполненными оболочками являются самыми стабильными. Например, очень устойчивой ядерной структурой характеризуется изотоп свинца Pb-208, который имеет заполненные оболочки протонов (Z = 82) и нейтронов (N = 126).

Подобные заполненные ядерные оболочки аналогичны заполненным электронным оболочкам атомов инертных газов, представляющих отдельную группу в периодической таблице. Стабильные ядра атомов с полностью заполненными протонными или нейтронными оболочками содержат определенные «магические» числа протонов или нейтронов: 2, 8, 20, 28, 50, 82, 114, 126, 184. Таким образом, атомам элементов в целом, как и по химическим свойствам, присуща также периодичность и ядерных свойств. Среди разных сочетаний числа протонов и нейтронов в ядрах изотопов (четно-четных; четно-нечетных; нечетно-четных; нечетно-нечетных) именно ядра, содержащие четное число протонов и четное число нейтронов, отличаются наибольшей устойчивостью.

Природа сил, удерживающих в ядре протоны и нейтроны, пока недостаточно ясна. Полагают, что между нуклонами действуют очень большие гравитационные силы притяжения, которые способствуют увеличению стабильности ядер.

К середине тридцатых годов прошлого столетия периодическая таблица была разработана настолько, что показывала положение уже 92 элементов. Под порядковым номером 92 был уран – последний из найденных на Земле еще в 1789 г. естественных тяжелых элементов. Из 92 элементов таблицы только элементы с порядковыми номерами 43, 61, 85 и 87 в тридцатые годы не были точно установлены. Они были открыты и изучены позже. Редкоземельный элемент с атомным номером 61 – прометий – был обнаружен в малых количествах в рудах как продукт самопроизвольного распада урана. Анализ атомных ядер недостающих элементов показал, что все они радиоактивны, причем из-за коротких периодов их полураспада они не могут существовать на Земле в заметных концентрациях.

В связи с тем, что последним тяжелым элементом, найденным на Земле, был элемент с атомным номером 92, можно было бы предположить, что он и является естественным пределом периодической таблицы Менделеева. Однако достижения атомной физики указали путь, по которому оказалось возможным перешагнуть через поставленную природой границу периодической таблицы.

Элементы с бо льшими атомными номерами, чем у урана, называют трансурановыми. По своему происхождению эти элементы являются искусственными (синтетическими). Их получают путем ядерных реакций трансформации элементов, встречающихся в природе.

Первую попытку, хотя не совсем удачную, открыть трансурановую область периодической системы предпринял итальянский физик Энрико Ферми в Риме вскоре после того, как было доказано существование нейтронов. Но лишь в 1940–1941 гг. успеха в открытии первых двух трансурановых элементов, а именно нептуния (атомный номер 93) и плутония (атомный номер 94), добились американские ученые из Калифорнийского университета в Беркли.

В основе методов получения трансурановых элементов лежит несколько видов ядерных реакций.

Первый вид – нейтронный синтез. В этом методе в ядрах тяжелых атомов, облученных нейтронами, происходит превращение одного из нейтронов в протон. Реакция сопровождается так называемым электронным распадом ( – -распадом) – образованием и выбросом из ядра с огромной кинетической энергией отрицательно заряженной – -частицы (электрона). Реакция возможна при избытке в ядре нейтронов.

Противоположной реакцией является превращение протона в нейтрон с испусканием положительно заряженной + -частицы (позитрона). Подобный позитронный распад ( + -распад) наблюдается при недостатке в ядрах нейтронов и ведет к уменьшению заряда ядра, т.е. к уменьшению атомного номера элемента на единицу. Аналогичный эффект достигается, когда протон превращается в нейтрон за счет захвата ближайшего орбитального электрона.

Новые трансурановые элементы вначале были получены из урана по методу нейтронного синтеза в ядерных реакторах (как продукты взрыва ядерных бомб), а позже синтезированы с помощью ускорителей частиц – циклотронов.

Второй вид – реакции между ядрами атомов исходного элемента («мишени») и ядрами атомов легких элементов (изотопов водорода, гелия, азота, кислорода и других), используемых в качестве бомбардирующих частиц. Протоны в ядрах «мишени» и «снаряда» имеют положительный электрический заряд и испытывают сильное отталкивание при приближении друг к другу. Чтобы преодолеть силы отталкивания, образовать составное ядро, необходимо обеспечить атомы «снаряда» очень большой кинетической энергией. Такой огромной энергией бомбардирующие частицы запасаются в циклотронах. Образовавшееся промежуточное составное ядро обладает довольно большой избыточной энергией, которая должна быть высвобождена для стабилизации нового ядра. В случае тяжелых трансурановых элементов эта избыточная энергия, когда не происходит деления ядер, рассеивается путем испускания -лучей (высокоэнергетического электромагнитного излучения) и «испарения» нейтронов из возбужденных ядер. Ядра атомов нового элемента являются радиоактивными. Они стремятся достигнуть более высокой устойчивости путем изменения внутреннего строения через радиоактивный электронный – -распад либо -распад и самопроизвольное деление. Такие ядерные реакции присущи наиболее тяжелым атомам элементов с порядковыми номерами выше 98.

Реакция спонтанного, самопроизвольного деления ядер атомов радиоактивных элементов была открыта нашим соотечественником Г.Н.Флеровым и чехом К.А.Петржаком в Объединенном институте ядерных исследований (ОИЯИ, г. Дубна) в опытах с ураном-238. Увеличение порядкового номера приводит к быстрому уменьшению времени полураспада ядер атомов радиоактивных элементов.

В связи с этим фактом выдающийся американский ученый Г.Т.Сиборг, лауреат Нобелевской премии, участвовавший в открытии девяти трансурановых элементов, полагал, что открытие новых элементов, вероятно, закончится приблизительно на элементе с порядковым номером 110 (по свойствам аналогичном платине). Эта мысль о границе периодической таблицы была высказана в 60-е годы прошлого столетия с оговоркой: если не будут открыты новые методы синтеза элементов и существование пока неизвестных областей устойчивости самых тяжелых элементов. Некоторые из таких возможностей были выявлены.

Третий вид ядерных реакций синтеза новых элементов – реакции между высокоэнергетическими ионами со средней атомной массой (кальция, титана, хрома, никеля) в качестве бомбардирующих частиц и атомами стабильных элементов (свинца, висмута) в качестве «мишени» вместо тяжелых радиоактивных изотопов. Этот путь получения более тяжелых элементов был предложен в 1973 г. нашим ученым Ю.Ц.Оганесяном из ОИЯИ и успешно использован в других странах. Главное достоинство предложенного метода синтеза заключалось в образовании менее «горячих» составных ядер при слиянии ядер «снаряда» и «мишени». Высвобождение избыточной энергии составных ядер в этом случае происходило в результате «испарения» существенно меньшего числа нейтронов (одного или двух вместо четырех или пяти).

Необычная ядерная реакция между ионами редкого изотопа Са-48, ускоренными в циклотроне
У-400, и атомами актиноидного элемента кюрия Cm-248 с образованием элемента-114 («экасвинца») была открыта в Дубне в 1979 г. Было установлено, что в этой реакции образуется «холодное» ядро, не «испаряющее» ни одного нейтрона, а всю избыточную энергию уносит одна -частица. Это означает, что для синтеза новых элементов может быть реализован также четвертый вид ядерных реакций между ускоренными ионами атомов со средними массовыми числами и атомами тяжелых трансурановых элементов.

В развитии теории периодической системы химических элементов большую роль сыграло сопоставление химических свойств и строения электронных оболочек лантаноидов с порядковыми номерами 58–71 и актиноидов с порядковыми номерами 90–103. Было показано, что сходство химических свойств лантаноидов и актиноидов обусловлено подобием их электронных структур. Обе группы элементов являются примером внутреннего переходного ряда с последовательным заполнением 4f - или 5f -электронных оболочек соответственно после заполнения внешних s - и р -электронных орбиталей.

Элементы с порядковыми номерами в периодической таблице 110 и выше были названы сверхтяжелыми. Продвижение к открытию этих элементов становится все более трудным и долгим, т.к. недостаточно провести синтез нового элемента, нужно его идентифицировать и доказать, что новый элемент обладает лишь ему одному присущими свойствами. Трудности вызваны тем, что для изучения свойств новых элементов доступным оказывается небольшое число атомов. Время же, в течение которого можно изучать новый элемент до того, как произойдет радиоактивный распад, обычно очень невелико. В этих случаях, даже когда получен всего один атом нового элемента, для его обнаружения и предварительного изучения некоторых характеристик используют метод радиоактивных индикаторов.

Элемент-109 – мейтнерий – это последний элемент в периодической таблице, представленной в большинстве учебников по химии. Элемент-110, принадлежащий к той же группе периодической таблицы, что и платина, был впервые синтезирован в г. Дармштадт (Германия) в 1994 г. с помощью мощного ускорителя тяжелых ионов по реакции:

Время полураспада полученного изотопа крайне мало. В августе 2003 г. 42-я Генеральная ассамблея ИЮПАК и Совет ИЮПАК (Международный союз по чистой и прикладной химии) официально утвердили название и символ элемента-110: дармштадтий, Ds.

Там же, в Дармштадте, в 1994 г. впервые был получен элемент-111 путем воздействия пучка ионов изотопа 64 28 Ni на атомы 209 83 Bi в качестве «мишени». Своим решением в 2004 г. ИЮПАК признал открытие и одобрил предложение назвать элемент-111 рентгением, Rg, в честь выдающегося немецкого физика В.К.Рентгена, открывшего Х -лучи, которым он дал такое название из-за неопределенности их природы.

По информации, полученной из ОИЯИ, в Лаборатории ядерных реакций им. Г.Н.Флерова осуществлен синтез элементов с порядковыми номерами 110–118 (за исключением элемента-117).

В результате синтеза по реакции:

в Дармштадте в 1996 г. получено несколько атомов нового элемента-112, распадающегося с выделением -частиц. Период полураспада этого изотопа составлял всего 240 микросекунд. Немного позже в ОИЯИ поиск новых изотопов элемента-112 провели, облучая атомы U-235 ионами Са-48.

В феврале 2004 г. в престижных научных журналах появились сообщения об открытии в ОИЯИ нашими учеными совместно с американскими исследователями из Национальной лаборатории имени Лоуренса в Беркли (США) двух новых элементов с номерами 115 и 113. Этой группой ученых в экспериментах, проведенных в июле–августе 2003 г. на циклотроне У-400 с газонаполненным сепаратором, в реакции между атомами Am-243 и ионами изотопа Ca-48 были синтезированы 1 атом изотопа элемента-115 с массовым числом 287 и 3 атома с массовым числом 288. Все четыре атома элемента-115 быстро распадались с выделением -частиц и образованием изотопов элемента-113 с массовыми числами 282 и 284. Наиболее стабильный изотоп 284 113 имел период полураспада около 0,48 с. Он разрушался с эмиссией -частиц и превращался в изотоп рентгения 280 Rg.

В сентябре 2004 г. группа японских ученых из Физико-химического исследовательского института под руководством Косуки Морита (Kosuke Morita) заявила, что ими синтезирован элемент-113 по реакции:

При его распаде с выделением -частиц получен изотоп рентгения 274 Rg. Поскольку это первый искусственный элемент, полученный японскими учеными, они посчитали, что вправе сделать предложение назвать его «японием».

Выше уже отмечался необычный синтез изотопа элемента-114 с массовым числом 288 из кюрия. В 1999 г. появилось сообщение о получении в ОИЯИ этого же изотопа элемента-114 путем бомбардировки ионами Са-48 атомов плутония с массовым числом 244.

Было также заявлено об открытии элементов с порядковыми номерами 118 и 116 в результате длительных совместных исследований ядерных реакций изотопов калифорния Cf-249 и кюрия Сm-245 c пучком тяжелых ионов Са-48, проведенных российскими и американскими учеными в период 2002–2005 гг. в ОИЯИ. Элемент-118 замыкает 7-й период таблицы Менделеева, по своим свойствам является аналогом благородного газа радона. Элемент-116 должен обладать некоторыми свойствами, общими с полонием.

По сложившейся традиции открытие новых химических элементов и их идентификация должны быть подтверждены решением ИЮПАК, но право предложить названия элементам предоставляется первооткрывателям. Подобно карте Земли, периодическая таблица отразила названия территорий, стран, городов и научных центров, где были открыты и изучены элементы и их соединения, увековечила имена знаменитых ученых, внесших большой вклад в развитие периодической системы химических элементов. И не случайно элемент-101 назван именем Д.И.Менделеева.

Для ответа на вопрос, где может проходить граница периодической таблицы, в свое время была проведена оценка электростатических сил притяжения внутренних электронов атомов к положительно заряженному ядру. Чем больше порядковый номер элемента, тем сильнее сжимается электронная «шуба» вокруг ядра, тем сильнее притягиваются внутренние электроны к ядру. Должен наступить такой момент, когда электроны начнут захватываться ядром. В результате такого захвата и уменьшения заряда ядра существование очень тяжелых элементов становится невозможным. Подобная катастрофическая ситуация должна возникнуть при порядковом номере элемента, равном 170–180.

Эта гипотеза была опровергнута и показано, что нет ограничений для существования очень тяжелых элементов с точки зрения представлений о строении электронных оболочек. Ограничения возникают в результате неустойчивости самих ядер.

Однако надо сказать, что время жизни элементов уменьшается нерегулярно с ростом атомного номера. Следующая ожидаемая область устойчивости сверхтяжелых элементов, обусловленная появлением замкнутых нейтронных или протонных оболочек ядра, должна лежать в окрестности дважды магического ядра с 164 протонами и 308 нейтронами. Возможности открытия таких элементов пока не ясны.

Таким образом, вопрос о границе периодической таблицы элементов по-прежнему сохраняется. Исходя из правил заполнения электронных оболочек с увеличением атомного номера элемента, прогнозируемый 8-й период таблицы Менделеева должен содержать суперактиноидные элементы. Отводимое им место в периодической таблице Д.И.Менделеева соответствует III группе элементов, подобно уже известным редкоземельным и актиноидным трансурановым элементам.

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.

Сначала статья о том, что такое "остров стабильности".

Остров стабильности: российские ядерщики лидируют в гонке

Синтез сверхтяжелых элементов, составляющих так называемых "остров стабильности", - амбициозная задача современной физики, в решении которой российские ученые опережают весь мир.

3 июня 2011 года экспертная комиссия, в которую вошли специалисты Международных союзов теоретической и прикладной химии (IUPAC) и физики (IUPAP), официально признала открытие 114-го и 116-го элементов таблицы Менделеева. Приоритет открытия отдан группе физиков под руководством академика РАН Юрия Оганесяна из Объединенного института ядерных исследований при содействии американских коллег из Ливероморской национальной лаборатории им. Лоуренса.

Академик РАН Юрий Оганесян, руководитель лаборатории ядерных реакций в ОИЯИ

Новые элементы стали самыми тяжелыми из тех, что включены в периодическую таблицу Менделеева, и получили временные названия унунквидия и унунгексия, образованные по порядковому номеру в таблице. Российские физики предложили назвать элементы "флеровием" в честь Георгия Флерова - советского физика-ядерщика, специалиста в области деления ядер и синтеза новых элементов, и "московием" в честь Московской области. Помимо 114-го и 116-го элементов в ОИЯИ ранее были синтезированы химические элементы с порядковыми номерами 104, 113, 115, 117 и 118. А 105-му элементу таблицы в честь признания вклада дубненских физиков в современную науку присвоено название "дубний".

Элементы, которых нет в природе

В настоящее время весь окружающий нас мир состоит из 83 химических элементов, от водорода (Z=1, Z — количество протонов в ядре) до урана (Z=92), время жизни которых больше времени жизни солнечной системы (4,5 миллиарда лет). Более тяжелые элементы, появившиеся во время нуклеосинтеза незадолго после Большого взрыва, уже распались и не дожили до наших дней. Уран, период полураспада которого составляет около 4,5×10 8 лет, еще распадется и радиоактивен. Однако в середине прошлого века исследователи научились получать элементы, которых нет в природе. В качестве примера такого элемента можно привести вырабатываемый в ядерных реакторах плутоний (Z=94), который производится сотнями тонн и является одним из мощнейших источников энергии. Период полураспада плутония существенно меньше, чем период полураспада урана, но все же достаточно велик, чтобы предположить возможность существования более тяжелых химических элементов. Концепция атома, состоящего из ядра, несущего в себе положительный заряд и основную массу, и электронных орбиталей, предполагает возможность существования элементов с порядковым номером до Z=170. Но на самом деле за счет нестабильности процессов, происходящих в самом ядре, граница существования тяжелых элементов намечается значительно раньше. В природе стабильные образования (ядра элементов, состоящие из разного числа протонов и нейтронов) встречаются только до свинца и висмута, затем следует небольшой полуостров, включающий в себя торий и уран, обнаруженные на Земле. Но как только порядковый номер элемента превышает номер урана, время его жизни резко уменьшается. Например, ядро 100-го элемента в 20 раз менее стабильно, чем ядро урана, а в дальнейшем эта нестабильность только усиливается из-за спонтанного деления ядер.

"Остров стабильности"

Эффект спонтанного деления был объяснен Нильсом Бором. Согласно его теории, ядро представляет собой каплю заряженной жидкости, то есть некую материю, не имеющую собственной внутренней структуры. Чем больше количество протонов в ядре, тем сильнее влияние кулоновских сил, под действием которых капля деформируется и делится на части. Такая модель предсказывает возможность существования элементов до 104-го - 106-го порядковых номеров. Однако в 60-х годах в Лаборатории ядерных реакций Объединенного института ядерных исследований был проведен ряд экспериментов по изучению свойств деления ядер урана, результаты которых невозможно было объяснить при помощи теории Бора. Оказалось, что ядро не является полным аналогом капли заряженной жидкости, а имеет внутреннюю

структуру. Причем чем тяжелее ядро, тем сильнее становится выражено влияние этой структуры, и картина распада будет выглядеть совсем не так, как прогнозирует модель капли жидкости. Так возникла гипотеза о существовании некой области стабильных сверхтяжелых ядер, далеких от известных сегодня элементов. Область получила название "острова стабильности", и после предсказания ее существования крупнейшие лаборатории США, Франции и Германии начали ряд экспериментов для подтверждения теории. Однако их попытки не увенчались успехом. И только эксперименты на дубненском циклотроне, результатом которых стало открытие 114-го и 116-го элементов, дают возможность утверждать, что область стабильности сверхтяжелых ядер действительно существует.

На рисунке ниже показана карта тяжелых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Черные квадраты - изотопы стабильных элементов, обнаруженных в земной коре (время полураспада более 10 9 лет). Темно-синий цвет - "море нестабильности", где ядра живут менее 10 −6 секунды. "Острова стабильности", следующие за "полуостровом" тория, урана и трансурановых элементов - предсказания микроскопической теории ядра. Два ядра с атомными номерам 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают, насколько близко можно подойти к "островам стабильности" при искусственном синтезе сверхтяжелых элементов.

Карта тяжелых нуклидов

Для того чтобы синтезировать стабильное тяжелое ядро, необходимо внедрить в него как можно больше нейтронов, поскольку именно нейтроны являются тем "клеем", который удерживает нуклоны в составе ядра. Первой идеей стало облучение некого исходного вещества потоком нейтронов от реактора. Но с помощью этого метода ученые смогли синтезировать только фермий, элемент с 100-м атомным номером. Причем вместо необходимых 60 нейтронов, в ядро удалось внедрить только 20. Не увенчались успехом и попытки американских ученых синтезировать сверхтяжелые элементы в процессе ядерного взрыва (по сути, в мощном импульсном потоке нейтронов), результатом их экспериментов стал все тот же изотоп фермия. С этого момента начал развиваться другой способ синтеза - столкнуть два тяжелых ядра в надежде на то, что результатом их столкновения станет ядро суммарной массы. Для проведения эксперимента нужно одно из ядер разогнать до скорости, составляющей примерно 0,1 скорости света при помощи ускорителя тяжелых ионов. Все тяжелые ядра, полученные сегодня, были синтезированы именно таким образом. Как уже было отмечено, остров стабильности находится в области нейтроно-избыточных сверхтяжелых ядер, поэтому ядра мишени и пучка также должны содержать избыток нейтронов. Подобрать такие элементы довольно сложно, поскольку практически все существующие стабильные нуклиды имеют строго определенное отношение числа протонов и нейтронов.

В эксперименте по синтезу 114-го элемента в качестве мишени был использован самый тяжелый изотоп плутония с атомной массой 244, выработанный в реакторе Ливерморской национальной лаборатории (США) и кальций-48 в качестве ядра-снаряда. Кальций-48 - стабильный изотоп кальция, которого в обычном кальции содержится всего 0,1%. Экспериментаторы надеялись на то, что такая конфигурация позволит почувствовать эффект увеличения времени жизни сверхтяжелых элементов. Для проведения опыта требовался ускоритель с мощностью пучка кальция-48, превосходящей все известные ускорители в десятки раз. В течение пяти лет такой ускоритель был создан в Дубне, он дал возможность поставить эксперимент в несколько сот раз более точный, чем эксперименты в других странах на протяжении последних 25 лет.

Получив пучок кальция необходимой интенсивности, экспериментаторы облучают плутониевую мишень. Если в результате слияния двух ядер образуются атомы нового элемента, то они должны вылететь из мишени и вместе с пучком продолжить движение вперед. Но их надо отделить от ионов кальция и других продуктов реакции. Эту функцию выполняет сепаратор.

MASHA (Mass Analyzer of Super Heavy Atoms) — установка для сепарации ядер

Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометров. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точностью 1/3000. Задача детектора - определить, что в него попало тяжелое ядро, зарегистрировать его энергию, скорость и место его остановки с высокой точностью.

Схема работы сепаратора

Для проверки теории существования "острова стабильности" ученные наблюдали за продуктами распада ядра 114-го элемента. Если теория справедлива, то получившиеся ядра 114-го элемента должны быть устойчивы к спонтанному делению, и быть альфа-радиоактивны, то есть испускать альфа-частицу, состоящую из двух протонов и двух нейтронов. Для реакции с участием 114-го элемента должен наблюдаться переход 114-го в 112-й. Затем ядра 112-го также испытывают альфа-распад и переходят в ядра 110-го и так далее. Причем время жизни нового элемента должно быть на несколько порядков больше времени жизни более легких ядер. Именно такие долгоживущие события, существование которых было предсказано теоретически, и увидели дубненские физики. Это является прямым указанием на то, что 114-й элемент уже испытывает действие структурных сил, формирующих остров стабильности сверхтяжелых элементов.

Примеры цепочек распада 114-го и 116-го элементов

В опыте по синтезу 116-го элемента в качестве мишени использовали уникальное вещество - кюрий-248, полученный на мощном реакторе НИИ атомных реакторов в г. Димитровграде. В остальном эксперимент проходил по той же схеме, что и поиск 114-го элемента. Наблюдение цепочки распадов 116-го элемента стало еще одним доказательством существования 114-го элемента, на этот раз он был получен в результате распада более тяжелого "родителя". В случае со 116-м элементом экспериментальные данные также показали существенное увеличение времени жизни при увеличении количества нейтронов в ядре. То есть современная физика синтеза тяжелых элементов вплотную подошла к границе "острова стабильности". Кроме того, образовавшиеся вследствие распада 116-го элемента элементы с атомными номерами 108, 109 и 110 имеют время жизни, исчисляемое минутами, что даст возможность изучать химические свойства этих веществ методами современной радиохимии и экспериментально проверить фундаментальность закона Менделеева относительно периодичности химических свойств элементов в таблице. Применительно к тяжелым элементам можно предположить, что 112-й элемент обладает свойствами кадмия и ртути, а 114-й - олова, свинца и т.д. Вероятно, на вершине острова стабильности существуют сверхтяжелые элементы, время жизни которых составляет миллионы лет. Эта цифра не дотягивает до возраста Земли, но все же не исключено присутствие сверхтяжелых элементов в природе, в нашей Солнечной системе, либо в космических лучах, то есть в других системах нашей Галактики. Но пока эксперименты по поиску "природных" сверхтяжелых элементов не увенчались успехом.

В настоящее время в ОИЯИ идет подготовка эксперимента по поиску 119-го элемента таблицы Менделеева, а Лаборатория ядерных реакций является мировым лидером в области физики тяжелых ионов и синтеза сверхтяжелых элементов.

Анна Максимчук,
научный сотрудник ОИЯИ,
специально для R&D.CNews.ru

Интересно, конечно. Оказывается, что много ещё может быть открыто химических элементов и даже почти стабильных.

Возникает вопрос: а в чём практический смысл всего этого довольно дорогого мероприятия по поиску новых почти стабильных элементов?

Кажется так, что когда найдут способ производить эти элементы, тогда и будет видно.

Но кое-что просматривается уже и сейчас. Например, если кто смотрел фильм "Хищник", то у хищника есть устройство самоуничтожения в браслете на руке и взрыв довольно мощный получается. Так вот. Эти новые химические элементы подобны урану-235, но при этом критическая масса может исчисляться граммами (при этом 1 грамм этого вещества эквивалентен взрыву 10 тонн тротила -- неплохая такая бомбочка размером всего с пятикопеечную монету).

Так что уже есть большой смысл учёным трудиться в поте лица, а государству не скупиться на расходы.

28 ноября 2016 года Международный союз теоретической и прикладной химии (ИЮПАК) присвоил названия четырем сверхтяжелым элементам: нихонию (113 элемент периодической системы), московию (115 элемент), теннесину (117 элемент) и оганесону (118 элемент). Московий, теннесин и оганесон впервые были получены в Российской Федерации в коллаборации с американскими физиками. В годовщину этой даты N + 1 совместно с Издательством Яндекса предлагает вам представить себя алхимиком и попробовать синтезировать один (или несколько, как повезет) сверхтяжелых элементов на ускорителе элементарных частиц.

Сверхтяжелые химические элементы с атомным номером больше 100 удается получить только в реакциях слияния в ускорителях заряженных частиц. В них тяжелое ядро-мишень обстреливают более легкими ядрами-снарядами. Ядра новых элементов возникают в случае точного попадания и слияния ядер снаряда и мишени. У вас есть возможность почувствовать себя алхимиком-любителем и создать новый элемент. В вашем распоряжении есть ядра-снаряды и ядра-мишени. Выберите пару и нажмите кнопку «Включить ускоритель». Если выберете правильную пару, то получите сверхтяжелый элемент, увидите продукты его распада и узнаете, кем и когда он был синтезирован в реальности.


А еще мы совместно с Издательством Яндекса приготовили ответы на распространенные в интернете вопросы про сверхтяжелые элементы. Кликните на вопрос, чтобы увидеть ответ.


Можно ли предсказать, сколько сверхтяжелых элементов еще можно будет открыть? Есть ли какое-то максимальное количество протонов, которое может быть в ядре и которое бы ограничивало массу элемента?

Все подобные предсказания основаны на современных моделях устойчивости атомных ядер. Исходя из самых наивных соображений кажется, что устойчивым может быть любое ядро, в котором кулоновское отталкивание между положительно заряженными протонами компенсируется силой связи между ними за счет сильного взаимодействия. Для этого, в любом случае, в ядре должно быть определенное количество незаряженных нейтронов, однако соотношение между количеством нейтронов и протонов - недостаточное условие для устойчивости атомных ядер. Здесь вступает в игру квантовая природа нуклонов: они обладают полуцелым спином и, как и электроны, стремятся собираться парами и формировать заполненные энергетические уровни.

Эти эффекты приводят к различию в устойчивости протонно-нейтронных систем относительно нескольких путей распада - спонтанного деления (которое происходит в результате квантово-механических эффектов и без внешнего возбуждения приводит к разделению на более легкие ядра и нейтроны), также α- и β-распада с испусканием α-частицы или электрона (или позитрона) соответственно. По отношению к каждому из каналов распада у каждого ядра есть свое время жизни. Так, при увеличении атомного номера элемента резко увеличивается вероятность спонтанного деления, что накладывает значительные ограничения на существование стабильных ядер сверхтяжелых элементов - все они должны быть неустойчивыми с довольно коротким периодом полураспада. Поэтому для всех элементов тяжелее свинца стабильных изотопов нет, все они радиоактивные.

Тем не менее, теория предсказывает, что даже среди сверхтяжелых элементов могут быть изотопы с относительно большим временем жизни. Они должны существовать для систем с подходящим соотношением протонов и нейтронов и полностью заполненными протонными и нейтронными уровнями. Тем не менее, синтезировать такие элементы пока не удалось, и если до ближайшего «острова стабильности» (который предсказывается для ядра флеровия со 184 нейтронами) добраться в ближайшем будущем кажется возможным, то отыскать среди абсолютно неустойчивых систем более тяжелые ядра со следующей заполненной оболочкой будет значительно тяжелее, если не невозможно.

Стоит, однако, отметить, что все эти предсказания основаны на моделях, которые хорошо работают для сравнительно небольших ядер, однако для сверхтяжелых элементов форма ядра, например, начинает довольно заметно отклоняться от сферической, что требует внесения поправок в эти модели.


Есть ли у сверхтяжелых элементов какое-то практическое применение? Или, возможно, оно появится в будущем?

На данный момент у сверхтяжелых элементов никакого практического применения нет. Это объясняется несколькими причинами. Во-первых, их синтез - крайне сложный технологический процесс, занимающий довольно долгое время, в результате которого происходит образование совсем небольшого количества ядер. Во-вторых, из всех элементов с порядковым номером больше ста только фермий (100-й элемент) и менделевий (101-й) имеют сравнительно стабильные изотопы с периодом полураспада 100 и 50 суток соответственно. У остальных же сверхтяжелых элементов даже самые устойчивые из синтезированных изотопов распадаются в лучшем случае за несколько десятков часов, а чаще - за секунды или даже миллисекунды.

Поэтому пока процесс синтеза сверхтяжелых ядер представляет лишь фундаментальный интерес, связанный с изучением нуклон-нуклонного взаимодействия и взаимодействия между кварками. Свойства синтезированных изотопов помогают строить более точные теоретические модели, которые можно использовать не только для исследования ядер атомов на Земле, но и, например, при изучении нейтронных звезд, в ядре которых плотность нуклонов значительно превышает плотность в ядрах атомов.

Ученые ожидают, что в будущем у сверхтяжелых элементов могут появиться и какие-то практические применения, связанные, в частности, с разработкой сенсоров или радиографических методов в медицине или промышленности. Возможно, это будут и какие-то новые способы использования, которые невозможно предсказать сейчас, однако в ближайшие годы их точно ожидать не стоит, потому что для этого должны кардинальным образом измениться технологии их получения.


Можно ли получить стабильные изотопы сверхтяжелых элементов, или все они будут только радиоактивными?

Стабильные изотопы элементов, расположенных в таблице Менделеева после свинца, сейчас неизвестны. Порядковый номер свинца в таблице Менделеева - 82-й. Это значит, что все элементы начиная с висмута будут так или иначе радиоактивными. Период полураспада этих элементов, однако, может варьироваться в очень широких пределах. Так, у наиболее устойчивого изотопа висмута, который раньше считался устойчивым, период полураспада составляет 2 × 10 19 лет, что на несколько порядков больше возраста Вселенной.

У синтезированных на данный момент изотопов сверхтяжелых элементов (с порядковым номером в таблице элементов больше ста) период полураспада значительно меньше, чем у висмута, и варьируется от ста дней до долей миллисекунды. Все они тоже радиоактивны.

Однако, согласно теоретическим предсказаниям, для некоторых элементов с определенным числом протонов и нейтронов в ядре возможно значительное увеличение периода полураспада. Нужное количество нейтронов и протонов в ядре соответствует полностью заполненным нейтронным и протонным оболочкам и предположительно должно равняться 114 для протонов и 184 для нейтронов. Теоретически такая конфигурация должна приводить к увеличению периода полураспада от сотен микросекунд до 10 5 лет. Относительная устойчивость ядер с числом протонов и нейтронов, близким к этим значениям, позволяет предположить существование «острова стабильности» среди сверхтяжелых элементов. Тем не менее, подтвердить его существование экспериментально пока не удалось. Но даже столь значительное увеличение времени жизни ядер не сделает эти изотопы устойчивыми - они так и останутся радиоактивными.


Возможно ли, хотя бы теоретически, обнаружить сверхтяжелые элементы в природе? Или хотя бы продукты их распада, которые бы доказывали, что такие элементы существовали?

Ни один из сверхтяжелых элементов обнаружен в природе не был (что неудивительно, учитывая, что у всех из них очень короткие периоды полураспада). Элемент с самым большим порядковым номером, который удалось найти на сегодняшний день в природе, - это уран с его 92 протонами в ядре.

В начале 1970-х годов сообщалось о нахождения в природных минералах элемента с порядковым номером 108 (позднее был синтезирован под названием хассий), около десяти лет назад говорили об обнаружении в образцах тория следов 122-го элемента, однако подтверждены эти факты не были.

На Земле условий, необходимых для синтеза устойчивых сверхтяжелых ядер, нет и никогда не было, однако считается, что близкие к подобным условиям могут достигаться при взрывах сверхновых. Температура при этом поднимается до значений, достаточных для запуска быстрого поглощения ядрами нейтронов (так называемого r-процесса). Пока достоверных подтверждений естественного образования элементов с порядковым номером больше 100 в таких процессах зафиксировано не было, однако проводятся исследования состава космических лучей на предмет наличия в них следов сверхтяжелых элементов. В частности, об обнаружении в метеоритном веществе частиц с атомными числами более 100 говорили в 2011 году. Эти данные, однако, также не были подтверждены.


Откуда появилось выражение «трансфермиевые войны» и почему так часто возникает вопрос о первенстве той или иной группы в синтезе нового элемента?

Это выражение обычно используют для обозначения споров между США и СССР о приоритете при открытии элементов с порядковыми номерами 104,105 и 106, которые были были открыты в 60-х и 70-х годах XX века. Сам термин «трансфермиевые войны» (все эти элементы располагаются в таблице Менделеева как раз вслед за фермием) был впервые предложен в 1994 году. В Советском Союзе синтез проводился в Объединенном институте ядерных исследований в Дубне, в США - в Национальными лабораториями имени Лоуренса в Беркли и Ливерморе. Первые удачные попытки синтеза 104-го элемента сейчас датируются 1964 годом, 105-го элемента - 1970 годом, а 106-го - 1974-м.

Советская сторона считала, что именно в Дубне впервые удалось синтезировать 104-й и 105-й элементы, и использовала для них названия «курчатовий» и «нильсборий» соответственно. Американские ученые критиковали результаты советских экспериментов и доказывали, что первыми получили эти элементы физики в их лабораториях и назвали их «резерфордием» и «ганием» (в честь Эрнеста Резерфорда и Отто Гана соответственно). Однако из-за того, что значительная часть данных о синтезе была в то время закрыта, однозначно определить первенство той или иной группы было достаточно сложно.

Из-за этого процесс выяснения первенства растянулся на 30 лет и стал одним из элементов холодной войны. Лишь в 1994 году была собрана международная комиссия, которая рассмотрела известные данные и предложила свои варианты названий для элементов. Изначально некоторые из принятых решений вызывали споры, в частности о присвоении элементам имен в честь еще живущего человека (Гленна Сиборга), перенесении названия от одного элемента другому относительно начальных предложений (что вовлекло в споры третью сторону - немецкое Общество исследования тяжелых элементов, ученые которого синтезировали 107-й, 108-й и 109-й элементы).

В результате было найдено компромиссное решение, и в 1997 году произошло окончательное утверждение приоритетов и названий элементов. В частности, было решено не увековечивать имена Игоря Курчатова и Отто Гана, имеющих отношение к советскому и нацистскому ядерным проектам. 104-й и 106-й элемент сейчас используют названия, предложенные американской стороной (резерфордий и сиборгий), 105-й элемент - в признание заслуг советских ученых назвали дубнием, для 107-го, 108-го и 109-го элементов используют названия, предложенные немецкими учеными - борий, хассий и мейтнерий (лишь первый из них отличается от предложенного варианта - изначально его предлагали называть нильсборием). Сейчас благодаря открытости данных и прописанной процедуре присвоения элементам имен вопросы о приоритете решаются значительно проще.

Миниатюра из алхимической рукописи XVI века «Блеск Солнца»


Могут ли сверхтяжелые элементы рождаться при взрывах сверхновых? И можем ли мы это рождение зафиксировать?

Известно, что при вспышках сверхновых может происходить образование ядер очень тяжелых элементов, например урана или тория. Эти ядра образуются по механизму быстрого захвата нейтронов (так называемый r-процесс). Считается, что при взрыве сверхновой образуется достаточная температура - около четырех миллиардов градусов - для запуска этого процесса. Тем не менее, частота образования самых тяжелых ядер даже в таких условиях не очень высока. Считается также, что, кроме урана и тория, при взрыве сверхновых звезд возможно, например, образование калифорния (это 98-й элемент).

Для образования более тяжелых ядер в результате r-процесса необходим запуск термоядерной реакции - таким образом, например, на Земле удалось впервые синтезировать эйнштейний (99-й элемент) и фермий (100-й). Предполагается, что несколько термоядерных взрывов могут привести и к достижению острова стабильности в результате r-процесса. Однако сегодня принято считать, что при взрывах сверхновых такие условия не выполняются и элементы с порядковыми номерами более 100 не образуются. Тем не менее, следы стабильных сверхтяжелых элементов, которые могли образоваться при взрывах сверхновых, продолжают искать, например, в космических лучах и облученных ими метеоритах. Подтверждение же синтеза более легких элементов (например, урана или калифорния) проводят по спектроскопическим исследованиям продуктов их спонтанного деления.


Почему так часто реакции синтеза сверхтяжелых элементов оказываются неудачными, если по теоретическим расчетам они должны работать?

Сверхтяжелые ядра получают с помощью реакции слияния более легких ядер друг с другом. Для этого мишень из более тяжелых элементов бомбардируют ядрами более легких. Чтобы получить ядро с необходимым числом протонов и нейтронов, нужно правильно подобрать те ядра, которые используются в качестве мишеней и снарядов. Здесь может быть несколько проблем, снижающих вероятность образования нужного ядра и его обнаружения.

Во-первых, для образования нужного ядра необходимо преодолеть электростатический барьер - все-таки оба сталкиваемых ядра обладают довольно большим положительным зарядом (и до того, как на коротких расстояниях между протонами начнут действовать силы притяжения, нужно преодолеть дальнодействующее электростатическое отталкивание). Для этого тем ядрам, которыми бомбардируют мишень, необходимо изначально придать достаточно высокую энергию.

Для снижения этого барьера выгоднее использовать в качестве налетающих частиц ядра с довольно большим количеством протонов. Однако их выбор на сегодняшний день ограничен. Раньше для синтеза новых ядер мишени из тяжелых элементов, например свинца, плутония или урана, бомбардировали сравнительно легкими ядрами, например неоном-22 или кислородом-18. Позже для этих целей использовали различные изотопы более тяжелых элементов: железа-58, никеля-62, никеля-64 или цинка-70. Крайне важными стали продукты реакции различных мишеней с изотопом кальция-48.

Перспективными считаются реакции, в которых мишень из урана бомбардируют ионами из сверхтяжелых элементов - того же урана, калифорния, эйнштейния. Для повышения вероятности образования ядра нужно, чтобы налетающее ядро имело сравнительно небольшой момент импульса, а образующееся «компаунд-ядро» имело форму, близкую к сферической. Нарушение этих требований приводит к тому, что реакции не происходят. Однако даже при правильном подборе параметров процесс синтеза очень долог - облучение мишени в течение нескольких месяцев может привести к синтезу сотни нужных ядер.

Таким образом, ограниченный выбор изотопов, которые можно использовать в реакциях синтеза, сложная, с технической точки зрения, их реализация и длительное время протекание реакций значительно снижают вероятность синтеза нужных ядер - даже тех, которые, по теоретическим предсказаниям, должны оказаться устойчивыми.


Раньше считали, что центр «острова стабильности» должен находиться в районе 114 элемента, а где «остров стабильности» находится по современным представлениям? Может быть, его нет вообще?

Центр «острова стабильности», согласно оболочечной модели ядра, соответствует полностью заполненным протонной и нейтронной оболочкам - изотопу с порядковым номером 114 и массовым числом 298, то есть ядру, состоящему из 114 протонов и 184 нейтронов.

Некоторые ученые считают, что центр «острова стабильности» может соответствовать следующему протонному «магическому числу» и, таким образом, более устойчивым должен быть элемент с 120-м номером (а может быть, даже и со 126-м). Кроме того, из-за высокой вероятности α-распада центр стабильности может быть смещен относительно номера 114-го к 112-му и 110-му элементам.

Поскольку для образования относительно устойчивого ядра важно не только количество протонов в нем, но и количество нейтронов, пока синтезировать изотопы с нужным числом нуклонов из-за ограниченного выбора изотопов в эксперименте не удавалось. Потому необходимых данных для подтверждения существования «острова стабильности» нет. Однако те измерения, которые были проведены для менее устойчивых изотопов сверхтяжелых элементов, достаточно хорошо согласуются с данными теоретических моделей.

Тем не менее, стоит отметить, что положение «острова стабильности» определено в рамках концепции оболочечной модели ядра, которая при большом количестве нейтронов или протонов может работать не совсем точно. В частности, некоторые эффекты, связанные с взаимодействием кварков, для нейтрон-избыточных ядер с помощью нее объяснить не удается.


Каков срок жизни элементов в центре «острова стабильности»?

Согласно теоретическим предсказаниям, центру «острова стабильности» соответствует ядро, состоящее из 114 протонов и 184 нейтронов. Синтезировать такой тяжелый изотоп пока не удалось. Однако по данным теоретических моделей именно такое число нуклонов в ядре соответствует полностью заполненным энергетическим оболочкам.

Что касается периодов полураспада этих элементов, то при делении ядер стоит принимать во внимание три возможных процесса: спонтанное деление ядер, а также α- и β-распад. Так, период полураспада 298 114, согласно предсказаниям моделей, должен составлять примерно 10 16 лет относительно спонтанного деления, 10 лет - относительно α-распада и около 10 5 лет - относительно β-распада.

С учетом всех видов распада наиболее стабильным ядром оказывается ядро 298 110. По данным теории, период его полураспада должен составлять около 10 9 лет. Тем не менее, область стабильных ядер относительно широкая, и почти для всех ядер с четным числом протонов от 110 до 114 и четным числом нейтронов от 180 до 184 период полураспада превышает 1 год.

Пока эти числа - лишь результат теоретических расчетов. Самый тяжелый и самый устойчивый изотоп 114-го элемента (флеровия Fl), который на данный момент был получен экспериментально, - это 289 Fl. Период его полураспада составляет около 30 секунд. Период самого стабильного изотопа 110-го элемента (дармштадтий Ds) - около 10 секунд. Тем не менее, экспериментально полученные значения довольно хорошо согласуются с предсказаниями теоретических моделей, поэтому если удастся провести синтез нужных ядер с большим числом нейтронов, время их жизни может существенно увеличиться.


Десять лет назад ученые говорили , что может существовать второй «остров стабильности». Удалось ли его обнаружить?

Вообще, согласно современным теоретическим моделям, в обозримой области элементов может существовать не два, а даже больше «островов стабильности», которые будут соответствовать ядрам с полностью заполненными нейтронными и протонными оболочками, когда число нуклонов равняется так называемому «магическому числу». Сейчас элемент, который может быть «островом стабильности», соответствует изотопу, состоящему из 114 протонов и 184 нейтронов. Согласно современным оболочечным моделям ядра, следующие для протонов «магические числа» - это 126 и 164, а для нейтронов - 196, 228 и 272.

Про возможное существование относительно устойчивых ядер с 120 или 126 протонами говорят довольно давно, а десять лет назад говорили о возможном существовании «острова стабильности» в районе 164-го элемента. Тем не менее, если возможного исследования 120-го элемента в относительно близкой перспективе еще можно ожидать, то говорить об экспериментальном изучении 126-го, а тем более 164-го элемента не приходится. Для этого нужны новые ускорители тяжелых ядер, которые позволили бы работать с низкими концентрациями короткоживущих изотопов. На данный момент таких устройств нет.

Сейчас самый тяжелый элемент, синтез которого удалось подтвердить, - это оганесон с порядковым номером 118. Кроме того, стоит отметить, что применимость использованных теоретических моделей для таких тяжелых ядер тоже не доказана.


Можно ли рассматривать нейтронные звезды как гигантское атомное ядро? Если нет, то в чем принципиальное отличие?

Нет, нейтронная звезда, хоть и состоит преимущественно из протонов и нейтронов, на гигантское атомное ядро не очень похожа. На самом деле, звезда имеет довольно сложное строение - как минимум пять слоев с разными свойствами, и тяжелые атомные ядра входят в состав некоторых из них как один из важных компонентов. При этом во внешних слоях в нейтронной звезде присутствуют, например, и электроны. А во внутренних слоях - ближе к центру нейтронной звезды - очень много свободных нейтронов.

Несмотря на то, что атомное ядро - квантово-механическая система с максимальной плотностью нейтронов и протонов на Земле, в нейтронных звездах плотность нуклонов значительно выше. Размер нейтронных звезд - всего пара десятков километров, а их масса часто превышает массу Солнца, поэтому ближе к центру звезды у нее очень высокая плотность - в несколько раз больше, чем в любом атомном ядре. В ядре нейтронной звезды лишь несколько процентов электронов и протонов, основную массу составляют нейтроны, которые находятся в состоянии ферми-жидкости. В самом центре звезды - во внутреннем ядре - плотность нуклонов может в 10–15 раз превышать плотность в атомных ядрах, при этом точный состав, состояние и механизмы взаимодействия частиц в таких плотных системах достоверно неизвестны.

Исследования нейтрон-избыточных ядер важную информацию, о том, каким образом нейтроны и кварки могут взаимодействовать в ядре нейтронной звезды, однако состояние нуклонов в центре нейтронной звезды в любом случае сильно отличается от того, которое можно наблюдать в атомных ядрах даже самых тяжелых элементов.


Александр Дубов