Какие бывают системы отсчета в физике и что это такое. Большая энциклопедия нефти и газа

Лекция 1. Элементы кинематики.

Материальная точка

Материальная точка - объект пренебрежимо малых размеров, имеющий массу.

Понятие «материальная точка» вводится для описания (с помощью математических формул) механического движения тел. Делается это потому, что описывать движение точки проще, чем реального тела, частицы которого к тому же могут двигаться с разными скоростями (например, при вращении тела или деформациях).

Если реальное тело заменяют материальной точкой, то этой точке приписывают массу этого тела, но пренебрегают его размерами, а заодно пренебрегают различием характеристик движения его точек (скоростей, ускорений и т. д.), если таковое имеется. В каких случаях это можно делать?

Практически любое тело можно рассматривать как материальную точку, если расстояния, проходимые точками тела, очень велики по сравнению с его размерами.

Например, материальными точками считают Землю и другие планеты при изучении их дви­жения вокруг Солнца. В данном случае различия в движении различных точек любой планеты, вызванные ее суточным вращением, не влияют на величины, описывающие годовое движение.

Следовательно, если в изучаемом движении тела можно пренебречь его вращением вокруг оси, такое тело можно представить как материальную точку.

Однако при решении задач, связанных с суточным вращением планет (например, при опреде­лении восхода Солнца в разных местах поверхности земного шара), считать планету материальной точкой бессмысленно, так как результат задачи зависит от размеров этой планеты и скорости движения точек ее поверхности.

^ Материальной точкой правомерно считать самолет, если требуется, например, определить среднюю скорость его движения на пути из Москвы в Новосибирск. Но при вычислении силы сопротивления воздуха, действующей на летящий самолет, считать его материальной точкой нель­зя, поскольку сила сопротивления зависит от размеров и формы самолета.

Если тело движется поступательно, даже если его размеры сопоставимы с расстояниями, ко­торые оно проходит, это тело можно рассматривать как материальную точку (поскольку все точки тела движутся одинаково).

В заключение можно сказать: тело, размерами которого в условиях рассматриваемой задачи можно пренебречь, можно считать материальной точкой.

Абсолютно твердое тело - физическая модель (типа как материальная точка).

Абсолютно твердое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

В 3D абсолютно твердое тело имеет 6 степеней свободы.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

Масса тела

Скорость центра масс тела

Момент инерции тела

Угловая скорость тела.

Система отсчета в физике

Системой отсчета в физике называют совокупность тела отсчета, системы координат, связанной с телом отсчета, и часы или иной прибор для отсчета времени. При этом всегда следует помнить, что всякая система отсчета условна и относительна. Всегда можно принять другую систему отсчета, относительно которой любое движение будет иметь совершенно другие характеристики.

Относительность – это вообще немаловажный аспект, который следует учитывать практически при любых расчетах в физике. Например, во многих случаях мы далеко не в любой момент времени можем определить точные координаты движущегося тела.

В частности, мы не можем расставить наблюдателей с часами на каждых ста метрах вдоль железнодорожного пути от Москвы до Владивостока. В таком случае мы рассчитываем скорость и местоположение тела приближенно в течение какого-то отрезка времени.

Нам не важна точность до одного метра при определении местоположения поезда на пути в несколько сотен или тысяч километров. Для этого в физике существуют приближения. Одним из таких приближений является понятие «материальная точка».

Траектория, путь, перемещение

ломаная кривая - эта линия называется траекторией. Так как траектория является линией, то онане имеет направления, не имеет числового значения - это только линия.

Траектория может быть известна ещё до начала движения. Заранее рассчитывается траектория движения экспедиции, искусственных спутников Земли, ваш безопасный маршрут и т.д.

В зависимости от траектории движения могут быть прямолинейными (ракета при взлёте, сосулька с крыши) и криволинейном (теннисный, футбольный мяч, при ударе).

Траектория одного и того же движения различна в различных системах отсчёта. Например, для пассажира равномерно двигающегося поезда падающий в вагоне мяч двигается вертикально вверх, а для человека стоящего на перроне, тот же мяч двигается по параболической траектории.

Тогда можно задать вопрос: А чему же равна длина траектории и как её измерить?

Обучающиеся предлагают свои версии.

Вообще длина траектории - это путь.

Путь - не имеет направление, т.е. скалярная величина.

Если участки траектории прямолинейные, то путь равен сумме длин участков.

Если участки криволинейные, то изменение координат тела описывают с помощью такого понятия как перемещение.

Перемещение – векторная величина, т.е. кроме числового значения имеет ещё направление.

Обозначается на чертежах как направленный отрезок соединяющий начальное и конечное положение тела в пространстве.

Модуль перемещения и путь могут совпадать по значению, только в том случае, если тело движется вдоль одной прямой в одном направлении.

Зная начальное положение вектора перемещения тела, можно определить, где находится тело в любой момент времени и в каком направлении оно движется.

Поступательное и вращательное движения

Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению. Поступательное движение не следует смешивать с прямолинейным. При поступательном движении тела траектории его точек могут быть любыми кривыми линиями.

Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором какие-нибудь две точки, принадлежащие телу (или неизменно с ним связанные), остаются во все время движения неподвижными

Скорость и ускорение

Скорость - это отношение пройденного пути ко времени, за которое этот путь пройден. Скорость так же - это сумма начальной скорости и ускорения умноженного на время. Скорость - произведение угловой скорости на радиус окружности.

v=S/t v=v 0 +a*t v=ωR

Ускорение тела, при равноускоренном движении - величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов :

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

v =ωR

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

Рис.3

При вращении тела вокруг неподвижной оси вектор углового ускорения ε направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору ω (рис. 3), при замедленном - противонаправлен ему (рис. 4).

Рис.4

Тангенциальная составляющая ускорения a τ =dv/dt , v = ωR и Нормальная составляющая ускорения Значит, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение а τ , нормальное ускорение а n) и угловыми величинами (угол поворота φ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:

s = R φ , v = R ω , а τ = R?, a n = ω 2 R. В случае равнопеременного движения точки по окружности (ω=const)

ω = ω 0 ± ?t, φ = ω 0 t ± ?t 2 /2, где ω 0 - начальная угловая скорость.

Типы движений

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Лекция 2. Динамика материальной точки.

Коль скоро мы говорим об измерениях расстояний и времени и выбрали соответствующие единицы (метры, секунды), мы должны условиться, относительно чего мы определяем эти пространственные и временные дистанции. Положение объекта может быть определено только по отношению к каким-то другим телам. Говорить о движении объекта, то есть об изменении его положения, мы можем, только если указываем тела, относительно которых это положение определено.

Тела, которые выбраны для определения положений всех остальных объектов, называются телами отсчета .

В качестве тела отсчета можно, выбрать произвольное твердое тело, например, три взаимно перпендикулярных стальных стержня (рис. 1.10 ). Далее, на теле отсчета выделяют точку, называемую началом отсчета 0 и выбирают единицы измерения расстояний (в СИ - метры).

Рис. 1.10. Тело отсчета

В повседневной практике естественным телом отсчета является наша Земля. Но этот выбор не является единственно возможным. Часто удобно пользоваться другими телами отсчета, например Солнцем или звездами. По отношению к разным телам отсчета одни и те же объекты совершают различные движения. Достаточно вспомнить спор относительно двух астрономических систем - Птолемея и Коперника . Обе эти системы правильные и отличаются они, в сущности, лишь выбором тел отсчета, выбор Коперником Солнца кардинально упростил описание движения планет, именно в этом и состоит его заслуга: в средние века требовалась немалая смелость для выбора Солнца, а не Земли в качестве тела отсчета, можно было и на костёр попасть.

После выбора тела отсчета положение какой-либо точки М в пространстве может быть задано с помощью направленного отрезка (радиус-вектора ), соединяющего начало отсчета 0 с данной точкой М . Но вектор - абстрактно-математическое понятие, физическим смыслом оно наполняется, когда мы вводим систему координат. Это может быть декартова прямоугольная система - три взаимно перпендикулярных оси, точка пересечения которых совмещена с началом отсчета. В этом случае радиус-вектор задается тремя проекциями , , данной точки М на координатные оси, которые называются компонентами вектора . Это может быть сферическая, цилиндрическая или любая другая система координат, где тот же радиус-вектор будет задан тройкой других чисел. Число три - это размерность нашего пространства, то есть число независимых координат, необходимых для определения положения точки. Для определения координат точки необходим прибор для определения расстояний, который мы условно будем называть линейкой . В действительности это может быть и деревянная школьная линейка и лазерный дальномер и что угодно другое, способное с требуемой точностью измерять расстояния.

Видео 1.1. Система координат Декарта

Для отсчета времени нам необходимы какие-то периодические процессы, происходящие в природе или устройствах, созданных человеком. Такие процессы (устройства с такими процессами) мы будем называть часами. При решении любой задачи надо условиться о выборе начала отсчета времени. Начало отсчета времени выбирается произвольно: можно отсчитывать время от сотворения мира, или от основания Рима, или от Рождества Христова, или от бегства Магомета из Мекки и т. д. Как и, практически, всегда произвольность выбора приводит к тому, что он - выбор может быть сделан удачно, менее удачно и совсем неудачно. Удачно – не удачно определяется тем, насколько простым, наглядным и прозрачным получается решение рассматриваемой задачи. В отличие от трехмерного пространства время одномерно, поэтому в дополнение к началу отсчета времени достаточно выбрать лишь единицы измерения (секунды).

Для отсчета времени нам необходимы какие-то периодические процессы, происходящие в природе или устройствах, созданных человеком. Такие процессы (устройства с такими процессами) мы будем называть часами . При решении любой задачи надо условиться о выборе начала отсчета времени. Начало отсчета времени выбирается произвольно: можно отсчитывать время от сотворения мира, или от основания Рима, или от Рождества Христова, или от бегства Магомета из Мекки и т.д. Как и, практически, всегда произвольность выбора приводит к тому, что он - выбор может быть сделан удачно, менее удачно и совсем неудачно. Удачно - не удачно определяется тем, насколько простым, наглядным и прозрачным получается решение рассматриваемой задачи. В отличие от трехмерного пространства время одномерно, поэтому в дополнение к началу отсчета времени достаточно выбрать лишь единицы измерения (секунды).

Тело отсчета, снабженное системой координат и часами, называют системой отсчета. .

Пример системы отсчета приведен на рис. 1.11.

Рис. 1.11. Система отсчета

Систему отсчета часто отождествляют с системой координат, что практически никогда не приводит к недоразумениям. Однако надо понимать, что это всё-таки не одно и то же: при одном и том же теле отсчета, линейке и часах система координат может быть декартовой, сферической или какой угодно другой.

В классической механике, которую сформулировал в современном виде И. Ньютон , предполагается абсолютный характер пространства и времени. Иначе говоря, в классической механике считается, что измеряемые расстояния и интервалы времени не зависят от выбора системы отсчета. Скажем, если в системе отсчета, связанной с Землей, расстояние от Москвы до Таллина составляет 860 км , то предполагается, что таким же будет результат измерений, проведенных по отношению к системе отсчета, связанной со звездами. Эти положения, кажущиеся столь естественными, вытекают, строго говоря, только из нашего практического опыта, ограниченного сравнительно небольшими расстояниями, временами и малыми скоростями. Впоследствии они были пересмотрены теорией относительности.

ОПРЕДЕЛЕНИЕ

Относительность движения проявляется в том, что поведение любого движущегося тела может быть определено только по отношению к какому-то другому телу, которое называют телом отсчета.

Тело отсчета и система координат

Тело отсчета выбирают произвольно. Следует отметить, что движущееся тело и тело отсчета равноправны. Каждое из них при расчете движения в случае необходимости можно рассматривать или как тело отсчета, или как тело движущееся. Например, человек стоит на Земле и наблюдает, как по дороге едет автомобиль. Человек неподвижен относительно Земли и считает Землю телом отсчета, самолет и автомобиль в этом случае тела движущиеся. Однако, пассажир автомобиля, который говорит, что дорога убегает из-под колес, тоже прав. Он считает телом отсчета автомобиль (он неподвижен относительно автомобиля), Земля при этом – тело движущееся.

Чтобы фиксировать изменение положение тела в пространстве, с телом отсчета нужно связать систему координат. Система координат – это способ задания положения объекта в пространстве.

При решении физических задач наиболее распространенной является декартова прямоугольная система координат с тремя взаимно перпендикулярными прямолинейными осями – абсциссой (), ординатой () и аппликатой (). Масштабной единицей измерения длины в СИ является метр.

При ориентировании на местности пользуются полярной системой координат. По карте определяют расстояние до нужного населенного пункта. Направление движения определяют по азимуту, т.е. углу, который составляет нулевое направление с линией, соединяющей человека с нужным пунктом. Таким образом, в полярной системе координат координатами являются расстояние и угол .

В географии, астрономии и при расчетах движений спутников и космических кораблей положение всех тел определяется относительно центра Земли в сферической системе координат. Для определения положения точки в пространстве в сферической системе координат задают расстояние до начала отсчета и углы и — углы, которые составляет радиус-вектор с плоскостью нулевого гринвичского меридиана (долгота) и плоскостью экватора (широта).

Система отсчета

Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета, относительно которой рассматривается движение тела.

При решении любой задачи о движении прежде всего должна быть указана та система отсчета, в которой будет рассматриваться движение.

При рассмотрении движения относительно подвижной системы отсчета справедлив классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной:

Примеры решения задач по теме «Относительность движения»

ПРИМЕР

Задание Самолет движется относительно воздуха со скоростью 50 м/с. Скорость ветра относительно земли 15 м/с. Какова скорость самолета относительно земли, если он движется по ветру? против ветра? перпендикулярно направлению ветра?
Решение В данном случае скорость — скорость самолета относительно земли (неподвижной системы отсчета), относительная скорость самолета — это скорость самолета относительно воздуха (подвижной системы отсчета), скорость подвижной системы отсчета относительно неподвижной — это скорость ветра относительно земли.

Направим ось по направлению ветра.

Запишем закон сложения скоростей в векторном виде:

В проекции на ось это равенство перепишется в виде:

Подставив в формулу численные значения, вычислим скорость самолета относительно земли:

В данном случае пользуемся системой координат , направив координатные оси, как показано на рисунке.

Складываем вектора и по правилу сложения векторов. Скорость самолета относительно земли:

Определение понятия система отсчёта в физике и механике включает в себя совокупность, которая состоит из тела отсчёта, системы координат, а также времени. Именно по отношению к этим параметрам изучается движение материальной точки или же состояние её равновесия.

С точки зрения современной физики, всякое движение можно признать относительным. Таким образом, любое движение тела можно рассматривать исключительно по отношению к другому материальному объекту или же совокупности таких объектов. Например, мы не можем указать , каков характер движения Луны в общем, но может определить её перемещение относительно Солнца, Земли, Звёзд, других планет и пр.

В ряде случаев подобная закономерность бывает связана не с единой материальной точкой, а с множеством базовых точек отсчёта. Эти базовые тела отсчёта могут задавать совокупность координат.

Основные составляющие

Основными составляющими любой системы отсчёта в механике можно считать следующие компоненты:

  1. Тело отсчёта – это физическое тело, по отношению к которому определяется изменение положения в пространстве других тел.
  2. Совокупность координат, которая связывается с этим телом. В этом случае она представляет собой точку отсчёта.
  3. Время – это момент начала отсчитывания времени, который необходим, чтобы определить нахождение тела в пространстве в любой момент.

Для того чтобы решить конкретную задачу, необходимо определить наиболее подходящую для этого сетку координат и структуру. Идеальные часы в каждой из них потребуются лишь одни. В этом случае начало, тело отсчёта и векторы координатных осей можно выбирать произвольно.

Основные свойства

Эти структуры в физике и геометрии имеют ряд существенных различий. К физическим свойствам, которые учитываются при построении и решении задачи, относятся изотропность и однородность.

Под однородностью в физике принято понимать тождественность всех точек в пространстве. Этот фактор имеет в физике немаловажное значение. Во всех точках Земли и Солнечной системы в целом в физики действуют абсолютно идентично. Благодаря этому начало отсчёта может быть размещено в любой удобной точке. И если исследователь поворачивает сетку координат вокруг начальной точки, при этом никакие другие параметры задачи не будут изменяться. Все направления, которые начинаются от этой точки, имеют абсолютно тождественные свойства. Такая закономерность называется изотропностью пространства.

Виды систем отсчёта

Существует несколько видов - подвижные и неподвижные, инерциальные и неинерциальные.

Если такая совокупность координат и времени требуется для проведения кинематических исследований, в этом случае все подобные структуры являются равноправными. Если же речь идёт о решении динамических задач, предпочтение отдаётся инерциальным разновидностям – в них движение имеет более простые характеристики.

Инерциальные системы отсчёта

Инерциальными называют такие совокупности, в которых физическое тело сохраняет состояние покоя или продолжает равномерно передвигаться, если на него не воздействуют внешние силы или суммарное воздействие этих сил равняется нулю. В этом случае на тело действует инерция , что и даёт название системе.

  1. Существование таких совокупностей подчиняется первому закону Ньютона .
  2. Именно в таких сетках возможно наиболее простое описание движения тел.
  3. По существу, инерциальная структура - это всего лишь идеальна математическая модель. Найти такую структуру в физическом мире не представляется возможным.

Одна и та же совокупность в одном случае может считаться инерциальной, а в другом будет признана неинерциальной. Это происходит в тех случаях, когда погрешность в результате неинерциальности слишком ничтожна и ею можно свободно пренебречь.

Неинерциальные системы отсчёта

Неинерциальные разновидности наравне с инерциальными связываются с планетой Земля. Учитывая космические масштабы, считать Землю инерциальной совокупностью можно весьма грубо и приблизительно.

Отличительной чертой неинерциальной системы является то, что она перемещается по отношению к инерциальной с некоторым ускорением. В этом случае законы Ньютона могут утратить свою силу и требуют введения дополнительных переменных. Без этих переменных описание такой совокупности будет недостоверным.

Проще всего рассматривать неинерциальную систему на примере. Такая характеристика движения характерна для всех тел, которые имеют сложную траекторию движения. Наиболее ярким примером такой системы можно считать вращение планет, в том числе и Земли.

Движение в неинерциальных системах отсчёта впервые изучено Коперником. Именно он доказал, что движение с участием нескольких сил может быть весьма сложным. До этого считалось, что движение Земли относится к инерциальным и описывалось оно законами Ньютона.

В физике существует такое понятие, как механическое движение, определение которого трактуется как изменение координат тела в трехмерном пространстве относительно иных тел с затратой времени. Как ни странно, но можно никуда не двигаясь превысить, к примеру, скорость автобуса. Эта величина относительна и зависима от заданной точки . Главное, зафиксировать систему отсчета, чтобы наблюдать за точкой по отношению к предмету.

Вконтакте

Описание

Понятия из физики:

  1. Материальная точка — часть тела или предмет с небольшими параметрами и массой, которые не принимаются в учет при изучении процесса. Это величина, которой в физике пренебрегают.
  2. Перемещение — это расстояние, пройденное материальной точкой из одной координаты в другую. Понятие не следует путать с движением, так как в физике это определение пути.
  3. Пройденный путь — это участок, который прошел предмет. Что такое пройденный путь рассматривает раздел физики под названием «Кинематика» .
  4. Траектория в пространстве — это прямая или ломаная линия, по которой объект проходит путь. Представить, что такое траектория, согласно определению из области физики, можно мысленно начертив линию.
  5. Механическим называют перемещение по заданной траектории.

Внимание! Взаимодействие тел осуществляется по законам механики, и этот раздел называется кинематикой.

Понять, что такое система координат, и что такое траектория на практике?

Достаточно мысленно найти точку в пространстве и от нее провести координатные оси, относительно ее будет двигаться предмет по ломаной или прямой линии, причем виды движения тоже будут разные, в их числе поступательное, осуществляемое при колебании и вращении.

Например, кот находится в комнате, перемещается к любому объекту или изменяет свое нахождение в пространстве, двигаясь по разным траекториям.

Расстояние между объектами может отличаться, так как выбранные траектории неодинаковые.

Типы

Известные виды движения:

  1. Поступательное. Характеризуется параллельностью двух соединенных между собой точек, одинаково движущихся в пространстве. Предмет движется поступательно, когда проходит по одной линии. Достаточно представить замену стержня в шариковой ручке, то есть стержень двигается поступательно по заданному пути, при этом каждая его часть движется параллельно и одинаково. Довольно часто такое встречается в механизмах.
  2. Вращательное. Предмет описывает окружность во всех плоскостях, которые расположены параллельно друг другу. Оси вращения — центры описываемых , а точки, расположенные на оси неподвижны. Сама вращающая ось может быть расположена внутри тела (ротационное), а также соединятся с внешними его точками (орбитальное). Чтобы уяснить, что это такое, можно взять обычную иглу с ниткой. Последнюю зажать между пальцами и постепенно раскручивать иглу. Игла будет описывать окружность, и подобные виды движения следует относить к орбитальным. Пример ротационного вида: раскручивание предмета на твердой поверхности.
  3. Колебательное . Все точки тела, перемещающегося по заданной траектории, с точностью или приближено повторяются через одинаковое время. Наглядный пример — шайба, подвешенная на шнуре, колеблющаяся вправо и влево.

Внимание! Особенность поступательного движения. Предмет двигается по прямой линии, и в любой временной промежуток все его точки перемещаются в одном направлении — это поступательное движение. Если едет велосипед, то в любое время можно отдельно рассмотреть траекторию его любой точки, она будет одинаковой. При этом не важно, ровная поверхность или нет.

Данные виды движения встречаются ежедневно на практике, поэтому проиграть их мысленно не составит труда.

Что такое относительность

Согласно законам механики, двигается предмет относительно какой-либо точки.

К, примеру, если человек стоит на месте, а автобус движется, это и называется относительность движения рассматриваемого транспортного средства к объекту.

С какой скоростью перемещается объект по отношению к определенному телу в пространстве тоже учитывается относительно этого тела и, соответственно, ускорение также имеет относительную характеристику.

Относительность — прямая зависимость заданной при движении тела траектории, проходимого пути, скоростной характеристики, а также перемещения по отношению к системам отсчета.

Как проводится отсчет

Что представляет собой система отсчета и как она характеризуется? Отсчет во взаимосвязи с пространственной системой координат, первичным отсчетом времени передвижения — это и есть система отсчета. В разных системах у одного тела может быть разное местонахождение.

Точка находится в системе координат, когда она начинает двигаться, учитывается ее время перемещения.

Тело отсчета — это абстрактный предмет, находящийся в заданной точке пространства.При ориентации на его положение рассматриваются координаты иных тел. К примеру, машина стоит на месте, а человек движется, в данном случае тело отсчета — это машина.

Равномерное перемещение

Понятие равномерное движение — это определение в физике трактуется следующим образом.