Вычисление систематических погрешностей при косвенных измерениях. Вычисление ошибок косвенных измерений

Погрешности измерений физических величин

1.Введение(измерения и погрешности измерений)

2.Случайные и систематические погрешности

3.Абсолютные и относительные погрешности

4.Погрешности средств измерений

5.Класс точности электроизмерительных приборов

6.Погрешность отсчета

7.Полная абсолютная погрешность прямых измерений

8.Запись окончательного результата прямого измерения

9.Погрешности косвенных измерений

10.Пример

1. Введение(измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.



Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения...).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

2. Случайные и систематические погрешности

Погрешности, возникаемые при измерениях делятся на систематические и случайные.

Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

Причины возникновения систематических погрешностей:

1) несоответствие средств измерения эталону;

2) неправильная установка измерительных приборов (наклон, неуравновешенность);

3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

3. Абсолютные и относительные погрешности

Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

А пр - D А < А ист < А пр + D А

Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/А пр или e= (D А/А пр)*100%.

Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

4. Погрешности средств измерений

Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

встречающихся в школьном эксперименте средств измерения.

Средства измерения

Предел измерения

Цена деления

Допустимаяпогрешность

линейка ученическая

линейка демонстрационная

лента измерительная

мензурка

гири 10,20, 50 мг

гири 100,200 мг

гири 500 мг

штангенциркуль

микрометр

динамометр

весы учебные

Секундомер

1с за 30 мин

барометр-анероид

720-780 мм рт.ст.

1 мм рт.ст

3 мм рт.ст

термометр лабораторный

0-100 градусов С

амперметр школьный

вольтметр школьный

5. Класс точности электроизмерительных приборов

Стрелочные электроизмерительные приборы по допустимым значениям погрешностям делятся на классы точности, которые обозначены на шкалах приборов числами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности g пр прибора показывает, сколько процентов составляет абсолютная погрешность от всей шкалы прибора.

g пр = (D и А/А макс)*100% .

Например абсолютная инструментальная погрешность прибора класса 2,5 составляет 2,5% от его шкалы.

Если известен класс точности прибора и его шкала, то можно определить абсолютную инструментальную погрешность измерения

D иА=( g пр * А макс)/100.

Для повышения точности измерения стрелочным электроизмерительным прибором надо выбирать прибор с такой шкалой, чтобы в процессе измерения располагались во второй половине шкалы прибора.

6. Погрешность отсчета

Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

Абсолютную погрешность отсчета принято обозначать D оА

7. Полная абсолютная погрешность прямых измерений

При выполнении прямых измерений физической величины А нужно оценивать следующие погрешности: D иА, D оА и D сА (случайную). Конечно, иные источники ошибок, связанные с неправильной установкой приборов, несовмещение начального положения стрелки прибора с 0 и пр. должны быть исключены.

Полная абсолютная погрешность прямого измерения должна включать в себя все три вида погрешностей.

Если случайная погрешность мала по сравнению с наименьшим значением, которое может быть измерено данным средством измерения (по сравнению с ценой деления), то ее можно пренебречь и тогда для определения значения физической величины достаточно одного измерения. В противном случае теория вероятностей рекомендует находить результат измерения как среднее арифметическое значение результатов всей серии многократных измерений, погрешность результата вычислять методом математической статистики. Знание этих методов выходит за пределы школьной программы.

8. Запись окончательного результата прямого измерения

Окончательный результат измерения физической величины А следует записывать в такой форме;

А=А пр + D А, e= (D А/А пр)*100%.

А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений. D А- полная абсолютная погрешность прямого измерения.

Абсолютную погрешность обычно выражают одной значащей цифрой.

Пример: L=(7,9 + 0,1) мм, e=13%.

9. Погрешности косвенных измерений

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= D Х/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле D Х=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений.

Вид функции

Формула

Х=А+В+С

Х=А-В


Х=А*В*С



Х=А n

Х=А/В

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33.Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н.Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

, следовательно абсолютная погрешность косвенного измерения μ составляет0,22*0,33=0,074

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку косвенных измерений.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть физическая величина j(x , y, z, ... ) является функцией ряда независимых аргументов x, y, z, ... , каждый из которых может быть определен экспериментально. Путем прямых измерений определяются величины и оцениваются их средние абсолютные погрешности или средние квадратичные погрешности .

Средняя абсолютная погрешность косвенных измерений физической величины j вычисляется по формуле

где - частные производные от φ по x, y, z, вычисленные для средних значений соответствующих аргументов.

Так как в формуле использованы абсолютные величины всех членов суммы, то выражение для оценивает максимальную погрешность измерения функции при заданных максимальных ошибках независимых переменных.

Средняя квадратичная погрешность косвенных измерений физической величины j

Относительная максимальная погрешность косвенных измерений физической величины j

где и т. д.

Аналогично можно записать относительную среднюю квадратичную погрешность косвенных измерений j

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность . Для этого (в случае средней абсолютной погрешности) надо проделать следующее.

1. Прологарифмировать выражение для косвенного измерения физической величины.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Формально заменить значки дифференциалов на значки абсолютной погрешности D.

Затем, зная e, можно вычислить абсолютную погрешность Dj по формуле

Пример 1. Вывод формулы для вычисления максимальной относительной погрешности косвенных измерений объёма цилиндра.

Выражение для косвенного измерения физической величины (исходная формула)

Величина диаметра D и высоты цилиндра h измеряются непосредственно приборами с погрешностями прямых измерений соответственноD D и Dh.

Прологарифмируем исходную формулу и получим

Продифференцируем полученное уравнение

Заменив значки дифференциалов на значки абсолютной погрешности D, окончательно получим формулу для расчёта максимальной относительной погрешности косвенных измерений объёма цилиндра

В лабораторной практике большинство измерений – косвенные и интересующая нас величина является функцией одной или нескольких непосредственно измеряемых величин:

N = ƒ (x, y, z, ...) (13)

Как следует из теории вероятностей, среднее значение величины определяется подстановкой в формулу (13) средних значений непосредственно измеряемых величин, т.е.

¯ N = ƒ (¯ x, ¯ y, ¯ z, ...) (14)

Требуется найти абсолютную и относительную ошибки этой функции, если известны ошибки независимых переменных.

Рассмотрим два крайних случая, когда ошибки являются либо систематическими, либо случайными. Единого мнения относительно вычисления систематической ошибки косвенных измерений нет. Однако, если исходить из определения систематической ошибки как максимально возможной ошибки, то целесообразно находить систематическую ошибку по формулам

(15) или

где

частные производные функции N = ƒ(x, y, z, ...) по аргументу x, y, z..., найденные в предположении, что все остальные аргументы, кроме того, по которому находится производная, постоянные;
δx, δy, δz – систематические ошибки аргументов.

Формулой (15) удобно пользоваться в случае, если функция имеет вид суммы или разности аргументов. Выражение (16) применять целесообразно, если функция имеет вид произведения или частного аргументов.

Для нахождения случайной ошибки косвенных измерений следует пользоваться формулами:

(17) или

где Δx, Δy, Δz, ... – доверительные интервалы при заданных доверительных вероятностях (надежностях) для аргументов x, y, z, ... . Следует иметь в виду, что доверительные интервалы Δx, Δy, Δz, ... должны быть взяты при одинаковой доверительной вероятности P 1 = P 2 = ... = P n = P.

В этом случае надежность для доверительного интервала ΔN будет тоже P.

Формулой (17) удобно пользоваться в случае, если функция N = ƒ(x, y, z, ...) имеет вид суммы или разности аргументов. Формулой (18) удобно пользоваться в случае, если функция N = ƒ(x, y, z, ...) имеет вид произведения или частного аргументов.

Часто наблюдается случай, когда систематическая ошибка и случайная ошибка близки друг к другу, и они обе в одинаковой степени определяют точность результата. В этом случае общая ошибка ∑ находится как квадратичная сумма случайной Δ и систематической δ ошибок с вероятностью не менее чем P, где P – доверительная вероятность случайной ошибки:

При проведении косвенных измерений в невоспроизводимых условиях функцию находят для каждого отдельного измерения, а доверительный интервал вычисляют для получения значений искомой величины по тому же методу, что и для прямых измерений.

Следует отметить, что в случае функциональной зависимости, выраженной формулой, удобной для логарифмирования, проще сначала определить относительную погрешность, а затем из выражения ΔN = ε ¯ N найти абсолютную погрешность.

Прежде чем приступать к измерениям, всегда нужно подумать о последующих расчетах и выписать формулы, по которым будут рассчитываться погрешности. Эти формулы позволят понять, какие измерения следует производить особенно тщательно, а на какие не нужно тратить больших усилий.

При обработке результатов косвенных измерений предлагается следующий порядок операций:
  1. Все величины, находимые прямыми измерениями, обработайте в соответствии с правилами обработки результатов прямых измерений. При этом для всех измеряемых величин задайте одно и то же значение надежности P.
  2. Оцените точность результата косвенных измерений по формулам (15) – (16), где производные вычислите при средних значениях величин.
    Если ошибка отдельных измерений входит в результат дифференцирования несколько раз, то надо сгруппировать все члены, содержащие одинаковый дифференциал, и выражения в скобках, стоящие перед дифференциалом взять по модулю ; знак d заменить на Δ (или δ).
  3. Если случайная и систематическая ошибки по величине близки друг к другу, то сложите их по правилу сложения ошибок. Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.
  4. Результат измерения запишите в виде:

    N = ƒ (¯ x, ¯ y, ¯ z, ...) ± Δƒ.

  5. Определите относительную погрешность результата серии косвенных измерений

    ε = Δƒ · 100%.
    ¯¯ ƒ¯

    Приведем примеры расчета ошибки косвенного измерения.

    Пример 1. Находится объем цилиндра по формуле

    V = π d 2 h ,

    ¯¯¯ 4¯¯

    где d – диаметр цилиндра, h – высота цилиндра.

    Обе эти величины определяются непосредственно. Пусть измерение этих величин дало следующие результаты:

    d = (4.01 ± 0.03) мм ,

    h = (8.65 ± 0.02) мм, при одинаковой надежности Р = 0.95.

    Среднее значение объема, согласно (14) равно

    V = 3.14 · (4.01) 2 · 8.65 = 109.19 мм

    ¯¯¯¯¯¯¯¯¯ 4¯¯¯¯¯¯¯¯

    Воспользовавшись выражением (18) имеем:

    ln V = ln π + 2 lnd + lnh - ln4;

    ;

    Так как измерения производились микрометром, цена деления которого 0.01 мм , систематические ошибки
    δd = δh = 0.01 мм. На основании (16) систематическая ошибка δV будет

    Систематическая ошибка оказывается сравнимой со случайной, следовательно

Чтобы понять основной принцип оценки погрешностей косвенных измерений, следует проанализировать источник этих погрешностей.

Пусть физическая величина Y есть функция непосредственно измеряемой величины х ,
Y = f(x).

Величина х имеет погрешность Dх . Именно эта погрешность Dх - неточность в определении аргумента x является источником погрешности физической величины Y , являющейся функцией f (x ).

Приращение Dх аргумента х определяет собой приращение функции .

Погрешность аргумента Dх косвенно определяемой физической величины Y определяет собой погрешность , где Dх - погрешность физической величины, найденной в прямых измерениях.

Если физическая величина является функцией нескольких непосредственно
измеряемых величин , то, проводя аналогичные рассуждения для каждого аргумента xi , получим:

Очевидно, что погрешность, рассчитанная по этой формуле, является максимальной и соответствует ситуации, когда все аргументы изучаемой функции имеют одновременно максимальное отклонение от своих средних значений. На практике такие ситуации маловероятны и реализуются крайне редко, поэтому следует рассчитывать
погрешность результата косвенных измерений .
(Эта формула доказывается в теории ошибок .)
В реальных измерениях относительная точность различных величин х i может сильно отличаться. При этом, если для одной из величин xm выполняется неравенство , где i =1,…, m -1, m +1,…, n , то можно считать, что погрешность косвенно определенной величины DY определяется погрешностью Dxm :

Пример.
При измерении скорости V полета пули методом вращающихся дисков, скорость пули V =360lN / j есть результат косвенных измерений, где l - расстояние между дисками, , N - число оборотов в единицу времени, известное с точностью , j - угол поворота измеренный в градусах , следовательно, для углов поворота j £ 70о определяющим точность фактором будет погрешность угла поворота дисков.

Итак, при вычислении погрешности косвенно определяемой физической величины надо прежде всего выявить наименее точно определенную в прямых измерениях величину и, если , считать , пренебрегая погрешностями остальных х i i ¹ m .

Рассмотрим наиболее распространенные случаи взаимосвязи физических величин.

В данном случае проще сначала вычислить относительную погрешность .

Это выражение дает завышенную погрешность. Более точная формула полученная из теории ошибок имеет вид: .

Переходя от дифференциалов к конечным приращениям, имеем:
.
В этом случае абсолютная погрешность DY пропорциональна относительной погрешности непосредственно измеряемой величины x . Если Dx = const , то с ростом х DY будет уменьшаться (вот почему графики логарифмических зависимостей как правило отличаются неравновеликими погрешностями DY ).
Пример.

При определении тройной точки нафталина необходимо построить зависимость ln P от обратной температуры, где Р давление в мм ртутного столба, определенное с точностью до 1 мм рт. ст.

Рис 1.
Итак, для логарифмических функций вида Y = A logax проще сразу вычислять абсолютную погрешность, которая пропорциональна относительной погрешности переменной x:

Лекция №8

Обработка результатов измерений

Прямые однократные и многократные измерения.

1. Прямые однократные измерения .

В общем случае задача оценки погрешности полученного результата обычно осуществляется на основе сведений о пределе допускаемой основной погрешности средства измерения (по нормативно-технической документации на используемые средства измерений) и известным значениям дополнительных погрешностей от воздействия влияющих величин. Максимальное значение суммарной погрешности результата измерения (без учета знака) можно найти суммированием составляющих по абсолютной величине:

Более реальную оценку погрешности можно получить статистическим сложением составляющих погрешности:

где - граница i-й неисключенной составляющей систематической погрешности; k - коэффициент, определяемый принятой доверительной вероятностью (при Р =0,95, коэффициент k =1,11); m - число не исключённых составляющих.

Результат измерения записывается по первой форме записи результатов:

где - результат однократного измерения; - суммарная погрешность результата измерений; Р - доверительная вероятность (при Р =0,95 может не указываться).

При проведении измерений в нормальных условиях можно считать

2. Прямые многократные измерения.

Точно оценить действительное значение измеряемой величины можно лишь путем ее многократных измерений и соответствующей обработки их результатов. Правильно обработать полученные результаты наблюдений – значит получить наиболее точную оценку действительного значения измеряемой величины и доверительного интервала, в котором находится ее истинное значение.

В процессе обработки результатов наблюдений необходимо последовательно решить следующие основные задачи:

Определить точечные и интегральные оценки закона распределения результатов измерений по формулам:

где D(x) – точечная оценка дисперсии;

Исключить «промахи» (по одному из критериев);

Устранить систематические погрешности измерений;

Определить доверительные границы не исключённого остатка систематической составляющей, случайной составляющей и общей погрешности результата измерения;

Записать результат измерения.

Оценивание погрешности косвенных измерений. Основные принципы и этапы расчетов. ГОСТы на обработку результатов.

Погрешности косвенных измерений

Оценка погрешностей, возникающих при косвенных измерениях, основывается на следующих предположениях:

1. Относительные погрешности величин, полученных прямыми измерениями и участвующих в расчете искомой величины, должны быть малы по сравнению с единицей (на практике они не должны превышать 10%).

2. Для погрешностей всех величин, участвующих в расчете, принята одна и та же доверительная вероятность. Эту же доверительную вероятность будет иметь и погрешность искомой величины.

3. Наиболее вероятное значение искомой величины получается, если для ее расчета используются наиболее вероятные значения исходных величин, т.е. их средние арифметические значения.

Погрешность в случае одной исходной величины.

Абсолютная погрешность. Пусть искомая величина y , измеряемая косвенно, зависит только от одной величины a , полученной прямым измерением. Границы интервала, в котором с заданной вероятностью лежит величина a , определяются средним арифметическим значением и полной абсолютной погрешностью a величины a . Это значит, что значение a может лежать внутри интервала с границами ± a .

При косвенном измерении для величины y (a ) такие границы будут определяться ее наиболее вероятным значением = y () и погрешностью y , т.е. значения y лежат внутри интервала с границами ± y . Верхней границей для y (при монотонном возрастании) будет значение, соответствующее верхней границе a , т.е. значение + y = y ( + а ) . Таким образом, абсолютная погрешность y величины y имеет вид приращения функции y(a) , вызванного приращением ее аргумента a на величину a его абсолютной погрешности. Следовательно, можно воспользоваться правилами дифференциального исчисления, согласно которому при малых значениях a приращение y можно приближенно выразить в виде

Здесь - производная по a функции y(a) при a = .

Таким образом, абсолютная погрешность окончательного результата может быть вычислена с помощью формулы (1), причем доверительная вероятность соответствует той доверительной вероятности, которую имеет a .

Относительная погрешность. Чтобы найти относительную погрешность значения y , поделим (1) на y и примем во внимание, что

представляет собой производную по a натурального логарифма y . В результате получится

Если в это выражение подставить a = и y = , то его значение и будет относительной погрешностью величины y .

Для обработки результатов измерений используется ГОСТ 8.207-76 «ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений».

8.3. Результат измерения и оценка его среднего квадратического отклонения:

1. Способы обнаружения грубых погрешностей должны быть указаны в методике выполнения измерений. Если результаты наблюдений можно считать принадлежащими к нормальному распределению, грубые погрешности исключают.

2. За результат измерения принимают среднее арифметическое результатов наблюдений, в которые предварительно введены поправки для исключения систематических погрешностей.

3. Среднее квадратическое отклонение S результата наблюдения оценивают согласно НТД.

4. Среднее квадратическое отклонение результата измерения оценивают по формуле

,

где х i - i -й результат наблюдения;

Результат измерения (среднее арифметическое исправленных результатов наблюдений);

n - число результатов наблюдений;

Оценка среднего квадратического отклонения результата измерения.

8.4. Доверительные границы случайной погрешности результата измерения:

1. Доверительные границы случайной погрешности результата измерения в соответствии с настоящим стандартом устанавливают для результатов наблюдений, принадлежащих нормальному распределению. Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

1.1. При числе результатов наблюдений n >50 для проверки принадлежности их к нормальному распределению по НТД предпочтительным является один из критериев: χ 2 Пирсона или ω 2 Мизеса - Смирнова.