По какой формуле рассчитывают количество теплоты. Понятие о количестве теплоты

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком - 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.



Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 -t 1) ,

гдеQ - количество теплоты, c - удельная теплоемкость, m - масса тела, t 1 - начальная темпе­ратура, t 2 - конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q >0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле: Q = C (t 2 - t 1).

22) Плавление: определение, расчет количества теплоты на плавление или отвердевание, удельная теплота плавления, график зависимости t 0 (Q).

Термодинамика

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры.

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры.

Количество теплоты

Это энергия , которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле



Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, значение смотреть в физических таблицах.

Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление - переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, значение смотреть в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование - это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина, значение смотреть в физических таблицах.

Горение

Количество теплоты, которое выделяется при сгорании вещества

Удельная теплота сгорания известная для каждого вещества величина, значение смотреть в физических таблицах.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса. Алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующим в теплообмене, равна нулю:

Q 1 +Q 2 +...+Q n =0

23) Строение жидкостей. Поверхностный слой. Сила поверхностного натяжения: примеры проявления, расчет, коэффициент поверхностного натяжения.

Время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 3.5.1).

Коэффициент β называют температурным коэффициентом объемного расширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С β в ≈ 2·10 – 4 К – 1 , у стали β ст ≈ 3,6·10 – 5 К – 1 , у кварцевого стекла β кв ≈ 9·10 – 6 К – 1 .

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β < 0). Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4 °С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому жизнь может существовать в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости.. Следует иметь ввиду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу ΔA внеш, пропорциональную изменению ΔS площади поверхности:

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму – в этом тоже проявляется действие сил поверхностного натяжения. Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости (рис. 3.5.3).

Силы поверхностного натяжения стремятся сократить поверхность пленки. Для равновесия подвижной стороны рамки к ней нужно приложить внешнюю силу Если под действием силы перекладина переместится на Δx , то будет произведена работа ΔA вн = F вн Δx = ΔE p = σΔS , где ΔS = 2L Δx – приращение площади поверхности обеих сторон мыльной пленки. Так как модули сил и одинаковы, можно записать:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность .

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp . Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR 2 сечения (рис. 3.5.4). Условие равновесия записывается в виде

Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис. 3.5.5). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. При полном смачивании θ = 0, при полном несмачивании θ = 180°.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

На рис. 3.5.6 изображена капиллярная трубка некоторого радиуса r , опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρh πr 2 g , F н = σ2πr cos θ.

Отсюда следует:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

24) Парообразование: определение, виды (испарение, кипение), расчет количества теплоты на парообразование и конденсацию, удельная теплота парообразования.

Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества. Удельная теплота парообразования. Ее единицы.

Явление превращения жидкости в пар называется парообразованием.

Испарение -процесс парообразования, происходящий с открытой поверхности.

Молекулы жидкости движутся с разными скоростями. Если какая-нибудь молекула окажется у поверхности жидкости, она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие молекулы образуют пар. У оставшихся молекул жидкости при соударении меняются скорости. Некоторые молекулы при этом приобретают скорость, достаточную для того, чтобы вылететь из жидкости. Этот процесс продолжается, поэтому жидкости испаряются медленно.

*Скорость испарения зависит от рода жидкости. Быстрее испаряются те жидкости, у которых молекул притягиваются с меньшей силой..

*Испарение может происходить при любой температуре. Но при высоких температурах испарение происходит быстрее.

*Скорость испарения зависит от площади ее поверхности.

*При ветре (потоке воздуха) испарение происходит быстрее.

При испарении внутренняя энергия уменьшается, т.к. при испарении жидкость покидают быстрые молекулы, следовательно, средняя скорость остальных молекул уменьшается. Значит, что если нет притока энергии из вне, то температура жидкости уменьшается.

Явление превращения пара в жидкость называется конденсацией. Она сопровождается выделением энергии.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних холодных слоях воздуха облака, которые состоят из мельчайших капель воды.

Удельная теплота парообразования – физ. величина, показывающая какое кол-во теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры.

Уд. теплоту парообразования обозначают буквой L и измеряется в Дж/кг

Уд. теплоту парообразования воды:L=2,3×10 6 Дж/кг, спирт L=0,9×10 6

Кол-во теплоты, необходимое для превращения жидкости в пар: Q = Lm

ТЕПЛООБМЕН.

1.Теплообмен.

Теплообмен или теплопередача – это процесс передачи внутренней энергии одного тела другому без совершения работы.

Существуют три вида теплообмена.

1) Теплопроводность – это теплообмен между телами при их непосредственном контакте.

2) Конвекция – это теплообмен, при котором перенос тепла осуществляется потоками газа или жидкости.

3) Излучение – это теплообмен посредством электромагнитного излучения.

2.Количество теплоты.

Количество теплоты – это мера изменения внутренней энергии тела при теплообмене. Обозначается буквой Q .

Единица измерения количества теплоты = 1 Дж.

Количество теплоты, полученное телом от другого тела в результате теплообмена, может тратиться на увеличение температуры (увеличение кинетической энергии молекул) или на изменение агрегатного состояния (увеличение потенциальной энергии).

3.Удельная теплоёмкость вещества.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры Т 1 до температуры Т 2 пропорционально массе тела m и разности температур (Т 2 – Т 1), т.е.

Q = cm 2 – Т 1 ) = с m Δ Т,

с называется удельной теплоёмкостью вещества нагреваемого тела.

Удельная теплоёмкость вещества равна количеству теплоту, которое необходимо сообщить 1 кг вещества, чтобы нагреть его на 1 К.

Единица измерения удельной теплоёмкости =.

Значения теплоёмкости различных веществ можно найти в физических таблицах.

Точно такое же количество теплоты Q будет выделяться при охлаждении тела на ΔТ.

4.Удельная теплота парообразования.

Опыт показывает, что количество теплоты, необходимое для превращения жидкости в пар, пропорционально массе жидкости, т.е.

Q = Lm ,

где коэффициент пропорциональности L называется удельной теплотой парообразования.

Удельная теплота парообразования равна количеству теплоты, которое необходимо для превращения в пар 1 кг жидкости, находящейся при температуре кипения.

Единица измерения удельной теплоты парообразования .

При обратном процессе, конденсации пара, теплота выделяется в том же количестве, которое затрачено на парообразование.

5.Удельная теплота плавления.

Опыт показывает, что количество теплоты, необходимое для превращения твёрдого тела в жидкость, пропорционально массе тела, т.е.

Q = λ m ,

где коэффициент пропорциональности λ называется удельной теплотой плавления.

Удельная теплота плавления равна количеству теплоты, которое необходимо для превращения в жидкость твёрдого тела массой 1 кг при температуре плавления.

Единица измерения удельной теплоты плавления .

При обратном процессе, кристаллизации жидкости, теплота выделяется в том же количестве, которое затрачено на плавление.

6.Удельная теплота сгорания.

Опыт показывает, что количество теплоты, выделяемое при полном сгорании топлива, пропорционально массе топлива, т.е.

Q = q m ,

Где коэффициент пропорциональности q называется удельной теплотой сгорания.

Удельная теплота сгорания равна количеству теплоты, которое выделяется при полном сгорании 1 кг топлива.

Единица измерения удельной теплоты сгорания.

7.Уравнение теплового баланса.

В теплообмене участвуют два или более тела. Одни тела отдают теплоту, а другие принимают. Теплообмен происходит до тех пор, пока температуры тел не станут равными. По закону сохранения энергии, количество теплоты, которое отдаётся, равно количеству, которое принимается. На этом основании записывается уравнение теплового баланса.

Рассмотрим пример.

Тело массой m 1 , теплоёмкость которого с 1 , имеет температуру Т 1 , а тело массой m 2 , теплоёмкость которого с 2 , имеет температуру Т 2 . Причём Т 1 больше Т 2 . Эти тела приведены в соприкосновение. Опыт показывает, что холодное тело (m 2) начинает нагреваться, а горячее тело (m 1) – охлаждаться. Это говорит о том, что часть внутренней энергии горячего тела передаётся холодному, и температуры выравниваются. Обозначим конечную общую температуру θ.

Количество теплоты, переданной горячим телом холодному

Q передан. = c 1 m 1 1 θ )

Количество теплоты, полученной холодным телом от горячего

Q получен. = c 2 m 2 (θ Т 2 )

По закону сохранения энергии Q передан. = Q получен. , т.е.

c 1 m 1 1 θ )= c 2 m 2 (θ Т 2 )

Раскроем скобки и выразим значение общей установившейся температуры θ.

Значение температуры θ в данном случае получим в кельвинах.

Однако, так как в выражениях для Q передан. и Q получен. стоит разность двух температур, а она и в кельвинах, и в градусах Цельсия одинакова, то расчёт можно вести и в градусах Цельсия. Тогда

В этом случае значение температуры θ получим в градусах Цельсия.

Выравнивание температур в результате теплопроводности можно объяснить на основании молекулярно-кинетической теории как обмен кинетической энергией между молекулами при сталкивании в процессе теплового хаотического движения.

Этот пример можно проиллюстрировать графиком.

Задание 81.
Вычислите количество теплоты, которое выделится при восстановлении Fe 2 O 3 металлическим алюминием, если было получено 335,1 г железа. Ответ: 2543,1 кДж.
Решение:
Уравнение реакции:

= (Al 2 O 3) - (Fe 2 O 3) = -1669,8 -(-822,1) = -847,7 кДж

Вычисление количества теплоты, которое выделяется при получении 335,1 г железа, про-изводим из пропорции:

(2 . 55,85) : -847,7 = 335,1 : х; х = (0847,7 . 335,1)/ (2 . 55,85) = 2543,1 кДж,

где 55,85 атомная масс железа.

Ответ: 2543,1 кДж.

Тепловой эффект реакции

Задание 82.
Газообразный этиловый спирт С2Н5ОН можно получить при взаимодействии этилена С 2 Н 4 (г) и водяных паров. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Ответ: -45,76 кДж.
Решение:
Уравнение реакции имеет вид:

С 2 Н 4 (г) + Н 2 О (г) = С2Н 5 ОН (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Рассчитаем тепловой эффект реакции, используя следствие из закона Гесса, получим:

= (С 2 Н 5 ОН) – [ (С 2 Н 4) + (Н 2 О)] =
= -235,1 -[(52,28) + (-241,83)] = - 45,76 кДж

Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы . Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - жидкое, к

Если в результате реакции выделяется теплота, то < О. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

С 2 Н 4 (г) + Н 2 О (г) = С 2 Н 5 ОН (г) ; = - 45,76 кДж.

Ответ: - 45,76 кДж.

Задание 83.
Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

а) ЕеО (к) + СО (г) = Fe (к) + СO 2 (г); = -13,18 кДж;
б) СO (г) + 1/2O 2 (г) = СO 2 (г) ; = -283,0 кДж;
в) Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж.
Ответ: +27,99 кДж.

Решение:
Уравнение реакции восстановления оксида железа (II) водородом имеет вид:

ЕеО (к) + Н 2 (г) = Fe (к) + Н 2 О (г) ; = ?

= (Н2О) – [ (FeO)

Теплота образования воды определяется уравнением

Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж,

а теплоту образования оксида железа (II) можно вычислить, если из уравнения (б) вычесть уравнение (а).

=(в) - (б) - (а) = -241,83 – [-283,o – (-13,18)] = +27,99 кДж.

Ответ: +27,99 кДж.

Задание 84.
При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод СS 2 (г) . Напишите термохимическое уравнение этой реакции, предварительно вычислите ее тепловой эффект. Ответ: +65,43 кДж.
Решение:
г - газообразное, ж - жидкое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г); = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) +(СS 2) – [(Н 2 S) + (СO 2)];
= 2(-241,83) + 115,28 – = +65,43 кДж.

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г) ; = +65,43 кДж.

Ответ: +65,43 кДж.

Tермохимическое уравнение реакции

Задание 85.
Напишите термохимическое уравнение реакции между СО (г) и водородом, в результате которой образуются СН 4 (г) и Н 2 О (г). Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия? Ответ: 618,48 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - кое, к - кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

СО (г) + 3Н 2 (г) = СН 4 (г) + Н 2 О (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) + (СН 4) – (СO)];
= (-241,83) + (-74,84) – (-110,52) = -206,16 кДж.

Термохимическое уравнение будет иметь вид:

22,4 : -206,16 = 67,2 : х; х = 67,2 (-206,16)/22?4 = -618,48 кДж; Q = 618,48 кДж.

Ответ: 618,48 кДж.

Теплота образования

Задание 86.
Тепловой эффект какой реакции равен теплоте образования. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:
а) 4NH 3 (г) + 5О 2 (г) = 4NO (г) + 6Н 2 O (ж) ; = -1168,80 кДж;
б) 4NH 3 (г) + 3О 2 (г) = 2N 2 (г) + 6Н 2 O (ж); = -1530,28 кДж
Ответ: 90,37 кДж.
Решение:
Стандартная теплота образования равна теплоте реакции образования 1 моль этого вещества из простых веществ при стандартных условиях (Т = 298 К; р = 1,0325 . 105 Па). Образование NO из простых веществ можно представить так:

1/2N 2 + 1/2O 2 = NO

Дана реакция (а), в которой образуется 4 моль NO и дана реакция (б), в которой образуется 2 моль N2. В обеих реакциях участвует кислород. Следовательно, для определения стандартной теплоты образования NO составим следующий цикл Гесса, т. е. нужно вы-честь уравнение (а) из уравнения (б):

Таким образом, 1/2N 2 + 1/2O 2 = NO; = +90,37 кДж.

Ответ: 618,48 кДж.

Задание 87.
Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлороводорода. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия? Ответ: 78,97 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие кое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

NH 3 (г) + НCl (г) = NH 4 Cl (к). ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (NH4Cl) – [(NH 3) + (HCl)];
= -315,39 – [-46,19 + (-92,31) = -176,85 кДж.

Термохимическое уравнение будет иметь вид:

Теплоту, выделившуюся при реакции 10 л аммиака по этой реакции, определим из про-порции:

22,4 : -176,85 = 10 : х; х = 10 (-176,85)/22,4 = -78,97 кДж; Q = 78,97 кДж.

Ответ: 78,97 кДж.

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q .

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: = = = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c .

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.


Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль . Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ bb"C"`. Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

Количество теплоты, необходимое для нагревания тела на `1^@ bb"C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то

`Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1)`. (1.3)

Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

Теплоизолирующей является оболочка калориметра - прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса :

В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

Плавление - процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы `m` при температуре плавления в жидкое состояние, равно

Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

Процесс кристаллизации - это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

Испарение - это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

`Q_(sf"исп") =L*m`. (1.6)

Конденсация - процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

Кипение - процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).