Что характеризует вязкость. Определение вязкости жидкости

Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

Динамической (абсолютной) вязкостью [μ ], или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости. Динамическая вязкость в системе СИ измеряется в [Н·с/м 2 ]. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что 1 Н/м 2 = 1 Па, динамическую вязкость часто выражают в [Па·с] или [мПа·с]. В системе СГС (CGS) размерность динамической вязкости - [дин·с/м 2 ]. Эта единица называется пуазом (1 П = 0,1 Па·с).

Переводные множители для расчета динамической [μ ] вязкости.

Единицы Микропуаз (мкП) Сантипуаз (сП) Пуаз ([г/см·с]) Па·с ([кг/м·с]) кг/(м·ч) кг·с/м 2
Микропуаз (мкП) 1 10 -4 10 -6 10 7 3,6·10 -4 1,02·10 -8
Сантипуаз (сП) 10 4 1 10 -2 10 -3 3,6 1,02·10 -4
Пуаз ([г/см·с]) 10 6 10 2 1 10 3 3,6·10 2 1,02·10 -2
Па·с ([кг/м·с]) 10 7 10 3 10 1 3 3,6·10 3 1,02·10 -1
кг/(м·ч) 2,78·10 3 2,78·10 -1 2,78·10 -3 2,78·10 -4 1 2,84·10 -3
кг·с/м 2 9,81·10 7 9,81·10 3 9,81·10 2 9,81·10 1 3,53·10 4 1

Кинематической вязкостью [ν ] называется величина, равная отношению динамической вязкости жидкости [μ ] к ее плотности [ρ ] при той же температуре: ν = μ/ρ. Единицей кинематической вязкости является [м 2 /с] - кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н·с/м 2 и плотность 1 кг/м 3 (Н = кг·м/с 2). В системе СГС (CGS) кинематическая вязкость выражается в [см 2 /с]. Эта единица называется стоксом (1 Ст = 10 -4 м 2 /с; 1 сСт = 1 мм 2 /с).

Переводные множители для расчета кинематической [ν ] вязкости.

Единицы мм 2 /с (сСт) см 2 /с (Ст) м 2 /с м 2 /ч
мм 2 /с (сСт) 1 10 -2 10 -6 3,6·10 -3
см 2 /с (Ст) 10 2 1 10 -4 0,36
м 2 /с 10 6 10 4 1 3,6·10 3
м 2 /ч 2,78·10 2 2,78 2,78·10 4 1

Нефти и нефтепродукты часто характеризуются условной вязкостью , за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре [t ] ко времени истечения 200 мл дистиллированной воды при температуре 20°С. Условная вязкость при температуре [t ] обозначается знаком ВУ, и выражается числом условных градусов.

Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).

Перевести вязкость из одной системы в другую можно при помощи номограммы .

В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:

Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения. Наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышают вязкость. Для различных групп углеводородов вязкость растет в ряду алканы - арены - цикланы.

Для определения вязкости используют специальные стандартные приборы - вискозиметры, различающиеся по принципу действия.

Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).

Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.

Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:

Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t .

Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).

Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.

Зависимость вязкости от температуры

Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).

С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.

Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.

Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:

Дважды логарифмируя это выражение, получаем:



По данному уравнению Е. Г. Семенидо была составлена номограмма на оси абсцисс которой для удобства пользования отложена температура, а на оси ординат - вязкость.

По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.



Для нефтяных смазочных масел очень важно при эксплуатации, чтобы вязкость как можно меньше зависела от температуры, поскольку это обеспечивает хорошие смазывающие свойства масла в широком интервале температур, т. е. в соответствии с формулой Вальтера это означает, что для смазочных масел, чем ниже коэффициент В, тем выше качество масла. Это свойство масел называется индексом вязкости , который является функцией химического состава масла. Для различных углеводородов по-разному меняется вязкость от температуры. Наиболее крутая зависимость (большая величина В) для ароматических углеводородов, а наименьшая - для алканов. Нафтеновые углеводороды в этом отношении близки к алканам.

Существуют различные методы определения индекса вязкости (ИВ).

В России ИВ определяют по двум значениям кинематической вязкости при 50 и 100°С (или при 40 и 100°С - по специальной таблице Госкомитета стандартов).

При паспортизации масел ИВ рассчитывают по ГОСТ 25371-97, который предусматривает определение этой величины по вязкости при 40 и 100°С. По этому методу согласно ГОСТ (для масел с ИВ меньше 100) индекс вязкости определяется формулой:

Для всех масел с ν 100 ν, ν 1 и ν 3 ) определяют по таблице ГОСТ 25371-97 на основе ν 40 и ν 100 данного масла. Если масло более вязкое (ν 100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.

Значительно проще определять индекс вязкости по номограммам .

Еще более удобная номограмма для нахождения индекса вязкости разработана Г. В. Виноградовым. Определение ИВ сводится к соединению прямыми линиями известных величин вязкости при двух температурах. Точка пересечения этих линий соответствует искомому индексу вязкости.

Индекс вязкости - общепринятая величина, входящая в стандарты на масла во всех странах мира. Недостатком показателя индекса вязкости является то, что он характеризует поведение масла лишь в интервале температур от 37,8 до 98,8°С.


Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:

В зависимости от химического состава масла ВМК его может быть от 0,75 до 0,90, причем, чем выше ВМК масла, тем ниже его индекс вязкости.


В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.

Масло с неразрушенной структурой имеет значительно большую вязкость, чем после ее разрушения. Если понизить вязкость такого масла путем разрушения структуры, то в спокойном состоянии эта структура восстановится и вязкость примет первоначальное значение. Способность системы самопроизвольно восстанавливать свою структуру называется тиксотропией . С увеличением скорости течения, точнее градиента скорости (участок кривой 1), структура разрушается, в связи с чем вязкость вещества снижается и доходит до определенного минимума. Этот минимум вязкости сохраняется на одном уровне и при последующем возрастании градиента скорости (участок 2) до появления турбулентного потока, после чего вязкость вновь нарастает (участок 3).

Зависимость вязкости от давления

Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.

Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:

В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.

При давлениях порядка 500 - 1000 МПа вязкость масел возрастает настолько, что они теряют свойства жидкости и превращаются в пластичную массу.

Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:

На основе этого уравнения Д.Э.Мапстоном разработана номограмма , при пользовании которой известные величины, например ν 0 и Р , соединяют прямой линией и отсчет получают на третьей шкале.

Вязкость смесей

При компаундировании масел часто приходится определять вязкость смесей. Как показали опыты, аддитивность свойств проявляется лишь в смесях двух весьма близких по вязкости компонентов. При большой разности вязкостей смешиваемых нефтепродуктов, как правило, вязкость меньше, чем вычисленная по правилу смешения. Приближенно вязкость смеси масел можно рассчитать, если заменить вязкости компонентов их обратной величиной - подвижностью (текучестью) ψ см :

Для определения вязкости смесей можно также пользоваться различными номограммами. Наибольшее применение нашли номограмма ASTM и вискозиграмма Молина-Гурвича . Номограмма ASTM базируется на формуле Вальтера. Номограмма Молина-Гуревича составлена на основании экспериментально найденных вязкостей смеси масел А и В, из которых А обладает вязкостью °ВУ 20 = 1,5, а В - вязкостью °ВУ 20 = 60. Оба масла смешивались в разных соотношениях от 0 до 100% (об.), и вязкость смесей устанавливалась экспериментально. На номограмме нанесены значения вязкости в уел. ед. и в мм 2 /с.

Вязкость газов и нефтяных паров

Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:

Летучесть (фугитивность) Оптические свойства Электрические свойства

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру. Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле:

^T = Bh(T1 – T2)

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра – 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • T1 – заданная температура в термостате, оС
  • T2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

Вязкостью называется способность жидкостей оказывать сопротивление усилиям, касательным к поверхности выделенного объёма, т. е. усилиям сдвига.

Пусть жидкость течёт вдоль плоской стенки (рисунок 1) слоями. Вследствие торможения со стороны стенки слои жидкости будут двигаться с разными скоростями, значения которых возрастают по мере удаления от стенки.

Рассмотрим два слоя, движущиеся на расстоянии
друг от друга. Ввиду разности скоростей, слой B сдвигается относительно слоя A на величину
за единицу времени. Величина
абсолютный сдвиг слоя B по слою A, а– градиент скорости (относительный сдвиг или скорость деформации). Касательное напряжение, поя

Рисунок - 1

вляющееся при этом движении (сила трения, приходящаяся на единицу площади) обозначают . Зависимость между касательным напряжением и скоростью деформации записывают по аналогии с явлением сдвига в твёрдых телах в виде

(10)

или если слои находятся бесконечно близко друг к другу, то получают закон вязкостного трения Ньютона

(11)

Величина , характеризующая сопротивляемость жидкости касательному сдвигу, называется динамическим коэффициентом вязкости. В зависимости от выбора направления отсчета расстояний по нормали (от стенки рассматриваемой трубы Илии ее оси) градиент скорости может быть положительным или отрицательным. Знакв формуле (11) принимается таким, чтобы касательное напряжение было положительным.

Сила внутреннего трения в жидкости

(12)

т. е. она прямо пропорциональна динамическому коэффициенту вязкости, площади трущихся слоёв
и градиенту скорости.

В системе СИ динамический коэффициент вязкости имеет размерность . В системе СГС за единицу динамического коэффициента вязкости принимаютпуаз (Пз). Размерностьпуаза
Следовательно,
или

При расчётах наиболее часто применяюткинематический коэффициент вязкости,

. (13)

Название «кинематический» этот коэффициент получил в связи с тем, что в его размерность входят единицы измерения только кинематических параметров и не входят единицы силы

В системе СИ кинематический коэффициент вязкости измеряется в (м 2 /с), в системе СГС – см 2 /с илистокс (Ст). Величину, в 100 раз меньшуюстокса , называютсантистоксом.

В практике, наряду с упомянутыми единицами измерения вязкости жидкости, используют условный градус Энглера (0 Е), определяемый одним из приборов для измерения вязкости – вискозиметром Энглера.

Под условным градусом Энглера понимают отношение времени истечения
м 3 (200 см 3) испытуемой жидкости, при данной температуре из латунного цилиндрического сосуда с коническим дном через калиброванное отверстие диаметром 2,8 мм, к времени истечения из этого же сосуда
м 3 дистиллированной воды при температуре 20 0 С.

По известному значению вязкости в условных градусах Энглера , кинематический коэффициент вязкости,, определяют по формуле

. (14)

Вязкость жидкостей в значительной степени зависит от температуры. При этом вязкость капельных жидкостей с увеличением температуры уменьшается (таблица 2), а вязкость газов возрастает. Это объясняется тем, что природа вязкости капельных жидкостей и газов различна. В газах средняя скорость теплового движения и длина свободного пробега молекул возрастает с повышением температуры, что приводит к увеличению вязкости. В капельных жидкостях молекулы могут лишь колебаться относительно среднего положения. Cростом температуры скорости колебательных движений молекул увеличиваются. Это облегчает возможность преодоления удерживающих их связей, и жидкость становится более подвижной и менее вязкой.

Таблица 2 - Коэффициент кинематической вязкости воды при различных температурах

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

Кинематический коэффициент вязкости капельных жидкостей при давлениях
слабо зависит от давления. В таблице 3 приведены значения коэффициента кинематической вязкости для некоторых жидкостей.

Таблица 3 – Коэффициент кинематической вязкости для некоторых жидкостей

Жидкость

ν , см 2 /с

Жидкость

ν , см 2 /с

Цельное молоко

Безводный

глицерин

Легкая нефть

Тяжелая нефть

Масло АМГ-10

Кинематический коэффициент вязкости газов при увеличении давления уменьшается.

Вязкость жидкостей | Вязкость воды, молока, бензина, нефти, спирта

Дата: 2008-12-10

Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν .

Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см 2 =1 г/(см·с). Сотая доля пуаза носит название сантипуаз (сП): 1 сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м 2 ; в системе СИ - Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м 2 =0,1 Па·с; 1 кгс·с/м 2 =98,1 П=9,81 Па·с.

Кинематический коэффициент вязкости

ν = μ /ρ,

Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см 2 /с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м 2 /с: 1 м 2 /с=10 4 Ст.

Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ 0 · e ­a(t-t 0) , где μ = μ 0 - значения динамического коэффициента вязкости соответственно при температуре t и t 0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025-0,035.

Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:

ν t = ν 50 ·(50/t 0) n ,

где ν t - кинематический коэффициент вязкости при температуре t 0 ;
ν 50 - кинематический коэффициент вязкости при температуре 50 0 С;
t - температура, при которой требуется определить вязкость, 0 С;
n - показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значенияν 50 .

С достаточной точностью n может определяться выражением n =lgν 50 +2,7. Значения n в зависимости от исходной вязкости ν при 50 0 С приведены далее в таблице

Значения динамического и кинематического коэффициентов вязкости некоторых жидкостей приведены далее в таблице

Жидкость t, 0 С μ, П μ, П·c ν, Ст
Бензин 15 0,0065 0,00065 0,0093
Глицерин 50%-ный водный раствор 20 0,0603 0,00603 0,0598
Глицерин 80%-ный водный раствор 20 1,2970 0,12970 1,0590
Глицерин безводный 20 14,990 1,4990 11,890
Керосин 15 0,0217 0,00217 0,0270
Мазут 18 38,700 3,8700 20,000
Молоко цельное 20 0,0183 0,00183 0,0174
Нефть легкая 18 0,178 0,0178 0,250
Нефть тяжелая 18 1,284 0,01284 1,400
Патока 18 888 0,888 600
Ртуть 18 0,0154 0,00154 0,0011
Скипидар 16 0,0160 0,00160 0,0183
Спирт этиловый 20 0,0119 0,00119 0,0154
Эфир 20 0,0246 0,00246 0,00327

Значение коэффициентов кинематической и динамической вязкости пресной воды

Источник: Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Комментарии к этой статье!!

Ответ droghkin: А что делать студентам, которых интересует табличная вязкость воды в системе СГС? Если в школе учат работать только в СИ, то в универе после курса механики ты пошлёшь эту СИ далеко и надолго. Потому что считать в ней попросту неудобно.

Добавить Ваш комментарий

Измерение вязкости нефтепродуктов

Абсолютная и кинематическая вязкость
При воздействии на жидкость внешних сил она сопротивляется потоку благодаря внутреннему трению. Вязкость - мера этого внутреннего трения.
Кинематическая вязкость - мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой - 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.
Абсолютная вязкость, иногда называемая динамической или простой вязкость, является произведением кинематической вязкости и плотности жидкости:
Абсолютная вязкость = Кинематическая вязкость * Плотность
Размерность кинематической вязкости - L 2 /T, где L - длина, и T - время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости - mm 2 /s, что равно 1 cSt. Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости - миллипаскаль-секунда (mPa-s), где 1 сПуаз = 1 mPa-s.
Другие общепринятые, но устаревшие единицы кинематической вязкости - Универсальные Секунды Сейболта (SUS) и Фурановые Секунды Сейболта (SFS). Эти единицы могут быть преобразованы в сантистоксы согласно инструкциям, приведенным в ASTM D 2161.

Ньютоновские и неньютоновские жидкости
Зависимость, в которой вязкость является константой независимо от напряжения или скорости сдвига, называется законом вязкости Ньютона. Закону вязкости Ньютона подчиняются большинство обычных растворителей, минеральные основные масла, синтетические основные масла, полностью синтетические однокомпонентные масла. Они называются ньютоновскими жидкостями.
Неньютоновские - жидкости могут быть определены как те, для которых вязкость не константа, а изменяется в зависимости от скорости сдвига или напряжения сдвига, при котором измеряется. Большинство современных моторных масел - обладают свойством мультивязкости, и изготовлены с применением высокомолекулярных полимеров, называемыми модификаторами вязкости. Вязкость таких масел уменьшается с увеличением в скорости сдвига. Они называются «жидкостями, разжижающимися при сдвиге» (shear-thinning)становящимися тоньше сдвигом" жидкостями(газами). Примерами других неньютоновских жидкостей являются краска для потолков, притирочная паста и «резиновый» цемент.

Методы измерения вязкости

Вискозиметры можно классифицировать по трем главным типам:

1. Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с -1 , заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы:
Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с -1 . Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами.
Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) -Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с -1 . Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с -1 . HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683 (см. ниже).

2. Ротационные вискозиметры используют для измерения сопротивления жидкости течению вращающий момент на вращающемся вале. К ротационным вискозиметрам относятся имитатор холодной прокрутки двигателя (CCS), миниротационный вискозиметр (MRV), вискозиметр Брукфильда и имитатор конического подшипника (TBS). Скорость сдвига может быть изменена за счет изменения габаритов ротора, зазора между ротором и стенкой статора и частоты вращения.
Имитатор холодной прокрутки (ASTM D 5293) - CCS измеряет кажущуюся вязкость в диапазоне от 500 до 200000 сПуаз. Скорость сдвига располагается между 104 и 105 c -1 . Нормальный диапазон рабочей температуры - от 0 до -40°C. CCS показал превосходную корреляцию с пуском двигателя при низких температурах. Классификация вязкости SAE J300 определяет низкотемпературную вязкостную эффективность моторных масел пределами по CCS и MRV.
Минироторный вискозиметр (ASTM D 4684) - тест MRV, который связан с механизмом прокачиваемости масла, является измерением при низкой скорости сдвига. Главная особенность метода - медленная скорость охлаждения образца. Образец подготавливается так, чтобы иметь определенную тепловую предысторию, которая включает нагревание, медленно охлаждение, и циклы пропитки. MRV измеряет кажущееся остаточное напряжение, которое, если большее чем пороговое значение, указывает на потенциальную проблему отказа прокачивания, связанную с проникновением воздуха. Выше некоторой вязкости (в настоящее время определенной как 60000 сПуаз по SAE J 300), масло может быть вызвать отказ прокачиваемости по механизму, называемому "эффект ограниченного потока". Масло SAE 10W, например, должно иметь максимальную вязкость 60000 сПуаз при -30°C без остаточного напряжения. С помощью этого метода измеряют также кажущуюся вязкость при скоростях сдвига от 1 до 50 c -1 .
Вискозиметр Брукфильда - определяет вязкость в широких пределах (от 1 до 105 Пуаз) при низкой скорости сдвига (до 102 c -1).
ASTM D 2983 используется прежде всего для определения низкотемпературной вязкости автомобильных трансмиссионных масел, масел для автоматических трансмиссий гидравлических и тракторных масел. Температура - испытаний находится в диапазоне от -5 до -40°C.
ASTM D 5133, метод сканирования Брукфильда, измеряет вязкость образца по Брукфильду, при охлаждении с постоянной скоростью 1°C/час. Подобно MRV, метод ASTM D 5133 предназначен для определения прокачиваемости масла при низких температурах. С помощью этого испытания определяется точка структурообразования, определенная как температура, при которой образец достигает вязкости 30,000 сПуаз. Определяется также индекс(показатель) структурообразования как самая большая скорость увеличения вязкости от -5°C к самой низкой испытательной температуре. Этот метод находит применение для моторных масел, и требуется согласно ILSAC GF-2.
Имитатор конического подшипника (ASTM D 4683) - эта методика также позволяет измерять вязкость моторных масел при высокой температуре и высокой скорости сдвига (см. Капиллярный Вискозиметр высокого давления). Очень высокие скорости сдвига получаются за счет чрезвычайно малого зазора между ротором и стенкой статора.

3. Разнообразные приборы используют множество других принципов; например, время падения стального шарика или иглы в жидкости, сопротивление вибрации зонда, и давления, прилагаемого к зонду текущей жидкостью.
Индекс вязкости
Индекс вязкости (ИВ) - эмпирическое число, указывающее степень изменения в вязкости масла в пределах данного диапазона температур. Высокий ИВ означает относительно небольшое изменение вязкости с температурой, а низкий ИВ означает большое изменение вязкости с температурой. Большинство минеральных основных масел имеет ИВ между 0 и 110, но ИВ полимерсодержащего масла (multigrage) часто превышает 110.
Для определения индекса вязкости требуется определить кинематическую вязкость при 40°C и 100°C. После этого ИВ определяют из таблиц по ASTM D 2270 или ASTM D 39B. Так как ИВ определяется из вязкости при 40°C и 100°C, он не связан с низкотемпературной или HTHS вязкостью. Эти значения получают с помощью CCS, MRV, низкотемпературного вискозиметра Брукфильда и вискозиметров высокой скорости сдвига.
SAE не использует ИВ, для классификации моторных масел начиная с 1967, потому что этот термин технически устарел. Однако, методика Американского нефтяного института API 1509 описывает систему классификации основных масел, используя ИВ как один из нескольких параметров, чтобы обеспечить принципы взаимозаменяемости масел и универсализацию шкалы вязкости.

Основные типы модификаторов вязкости
Химическая структура и размер молекул - наиболее важные элементы молекулярной архитектуры модификаторов вязкости. Имеется множество типов модификаторов вязкости, выбор зависит от специфических обстоятельств.
Все выпускаемые сегодня модификаторы вязкости, состоят из алифатических углеродных цепочек. Главные структурные различия находятся в боковых группах, которые отличаются и химически, и по размеру. Эти изменения в химической структуре обеспечивают различные свойства модификаторов вязкости типа масел, такие как способность к загустеванию, зависимость вязкости от температуры, окислительная стабильность и характеристики экономии топлива.
Полиизобутилен (PIB или полибутен) - преобладающие модификаторы вязкости в конце 1950-ых, с тех пор PIB модификаторы были заменены модификаторами других типов, потому что они обычно не обеспечивают удовлетворительную работу при низких температурах и работу дизельных двигателей. Однако, низкмолекулярные PIB все еще широко используется в автомобильных трансмиссионных маслах.
Полиметилакрилат (PMA) - PMA модификаторы вязкости содержат алкильные боковые цепочки, которые препятствуют образованию кристаллов воска в масле, таким образом обеспечивая превосходные свойства при низкой температуре.
Олефиновые сополимеры (OCP) - OCP модификаторы вязкости широко используются для моторных масел благодаря их низкой стоимости и удовлетворительной моторной эффективности. Выпускаются различные OCP, отличные главным образом по молекулярному весу и отношению этилена к пропилену.
Сложные эфиры сополимера стирола и малеинового ангидрида (стироловые эфиры) - стироловые эфиры - мультифункциональные модификаторы вязкости высокой эффективности. Комбинация различных алкильных групп придает маслам, содержащим такие добавки, превосходные свойства при низкой температуре. Стирольные модификаторы вязкости использовались в маслах для энергосберегающих двигателей и по-прежнему используются в трансмиссионных маслах для автоматических коробок передач.
Насыщенные стиролдиеновые сополимеры - модификаторы на основе гидрогенизированныз сополимеров стирола с изопреном или бутадиеном способствуют экономии топлива, хорошими характеристиками вязкости при низких температурах и выскокотемпературными свойствами.
Насыщенные радиальные полистиролы (STAR) - модификаторы на основе гидрогенизированных радиальных полистирольных модификаторов вязкости показывают хорошее сопротивление сдвигу при относительно низкой стоимости обработки, по сравнению с другими типами модификаторов вязкости. Их свойства при низкой температуре подобны свойствам модификаторов OCP.