В процессе гликолиза в клетках. Суммарное уравнение гликолиза

В этой статье мы подробно рассмотрим аэробный гликолиз, его процессы, разберем стадии и этапы. Ознакомимся с анаэробным узнаем об эволюционных видоизменениях данного процесса и определим его биологическое значение.

Что такое гликолиз

Гликолиз - это одна из трех форм окисления глюкозы, при котором сам процесс окисления сопровождается выделением энергии, которая запасается в НАДН и АТФ. В процессе гликолиза из молекулы две молекулы кислоты пировиноградной.

Гликолиз - это процесс, происходящий под воздействием различных биологических катализаторов - ферментов. Главным окислителем служит кислород - О 2 , однако процессы гликолиза могут протекать и в его отсутствие. Такой вид гликолиза называют - анаэробный гликолиз.

Процесс гликолиза при отсутствии кислорода

Анаэробный гликолиз - ступенчатый процесс окисления глюкозы, при котором глюкоза окисляется не полностью. Образуется одна молекула пировиноградной кислоты. А с энергетической точки зрения, гликолиз без участия кислорода (анаэробный) является менее выгодным. Однако при поступлении кислорода в клетку анаэробный процесс окисления может превращаться в аэробный и протекать в полноценной форме.

Механизмы гликолиза

Процесс гликолиза - это разложение шестиуглеродной глюкозы на пируват трехуглеродный в виде двух молекул. Сам процесс разделяется на 5 этапов подготовки и 5 этапов, при которых запасается энергия в АТФ.

Процесс гликолиза из 2 стадий и 10 этапов выглядят следующим образом:

  • 1 стадия, этап 1 - фосфорилирование глюкозы. По шестому атому углерода в глюкозе, сам сахарид активируют через фосфорилирование.
  • Этап 2 - изомеризация глюкозы-6-фосфата. На этом этапе фосфоглюкозоимераза каталитический обращает глюкозу во фруктозу-6-фосфат.
  • Этап 3 - Фруктоза-6-фосфат и её фосфорилирование. Этот этап заключается в образовании фруктозо-1,6-дифосфата (альдолаза) путем воздействия фосфофруктокиназы-1, которая сопровождает фосфорильную группу от аденозинтрифосфорной кислоты к молекуле фруктозы.
  • Этап 4 - это процесс расщепления альдолазы с образованием двух молекул триозофосфата, а именно эльдозы и кетозы.
  • Этап 5 - триозофосфаты и их изомеризация. На этом этапе глицеральдегид-3-фосфат отправляется на последующие этапы расщепления глюкозы, а дигидроксиацетонфосфат переходит в форму глицеральдегид-3-фосфата под воздействием фермента.
  • 2 стадия, этап 6 (1) - Глицеральдегид-3-фосфат и его окисление - этап в котором данная молекула окисляется и фосфорилируется до дифосфоглицерата-1,3.
  • Этап 7 (2) - направлен на перенос группы фосфатов на АДФ с 1,3-дифосфоглицерата. Конечными продуктами данного этапа являются образование 3-фосфоглицерата и АТФ.
  • Этап 8 (3) - переход от 3-фосфоглицерата в 2-фосфоглицерат. Этот процесс происходит под воздействием фермента фосфоглицератмутаза. Обязательным условием протекания химической реакции является наличие магния (Mg).
  • Этап 9 (4) - 2 фосфоглицерта дегидратируется.
  • Этап 10 (5) - в АДФ и ФЕП переносятся фосфаты, полученные в результате прохождения предыдущих этапов. Энергия с фосфоэнулпировата переносится на АДФ. Для протекания реакции необходимо наличие ионов калия (K) и магния (Mg).

Видоизмененные формы гликолиза

Процесс гликолиза способен сопровождаться дополнительной выработкой 1,3 и 2,3-бифосфоглицератов. 2,3-фосфоглицерат под влиянием биологических катализаторов способен возвращаться в гликолиз и переходить в форму 3-фосфоглицерата. Роль данных ферментов разнообразная, например, 2,3-бифосфоглицерат, находясь в гемоглобине, заставляет кислород переходить в ткани, способствуя диссоциации и понижая сродство О 2 и эритроцитов.

Многие бактерии изменяют формы гликолиза на различных этапах, сокращая их общее количество или видоизменяя их под воздействием разных ферментов. Небольшая часть анаэробов имеет другие методы углеводного разложения. Многие термофилы вовсе имеют лишь 2 фермента гликолиза, это енолаза и пируваткиназа.

Гликоген и крахмал, дисахариды и другие виды моносахаридов

Аэробный гликолиз - это процесс, свойственный и другим видам углеводов, а конкретно он присущ крахмалу, гликогену, большинству дисахаридов (маноза, галактоза, фруктоза, сахароза и другие). Функции всех видов углеводов в целом направлены на получение энергии, но могут различаться спецификой своего назначения, использования и т. д. Например, гликоген поддается гликогенезу, что по сути, является фосфолитическим механизмом, нацеленным на получение энергии при расщеплении гликогена. Сам же гликоген может запасаться в организме как резервный источник энергии. Так, например, глюкоза, получаемая во время приёма пищи, но не усвоившаяся мозгом, накапливается в печени и будет использована при недостатке глюкозы в организме с целью защитить индивид от серьезных сбоев гомеостаза.

Значение гликолиза

Гликолиз - это уникальный, однако не единственный вид окисления глюкозы в организме, клетке как прокариотов, так и эукариотов. Ферменты гликолиза являются водорастворимыми. Реакция гликолиза в некоторых тканях и клетках может происходить только таким образом, например, в мозгу и клетках нефронов печени. Другие способы окисления глюкозы в этих органах не используются. Однако не везде функции гликолиза одинаковы. Например, жировые ткани и печени в процессе пищеварения добывают необходимые субстраты из глюкозы для синтеза жиров. Многие растения используют гликолиз как способ добычи основной части энергии.

1.7 Реакции гликолиза

А Введение

Гликолиз представляет собой метаболический путь окисления глюкозы. Он протекает в цитозоле клетки по одному из двух сценариев:

1. Аэробный гликолиз происходит в присутствии кислорода и включает 10 реакций.

Продукты - 2 молекулы пирувата, 4 АТФ и 2 NADH. Затраты - 2 молекулы АТФ.

2. Анаэробный гликолиз протекает в отсутствии кислорода и помимо 10 основных реакций включает ещё одну - восстановление пирувата в лактат (молочную кислоту). Смысл этой реакции будет рассмотрен ниже. Общее количество реакций - 11.

Продукты - 2 молекулы лактата, 4 АТФ. Затраты - 2 молекулы АТФ.

Из всех реакций гликолиза термодинамически необратимыми являются 1-я, 3-

я и 10-я. Все остальные реакции обратимы.

Б Уравнения реакций

1. Глюкоза + АТФ Глюкозо-6-фосфат + АДФ + H+

2. Глюкозо-6-фосфат Фруктозо-6-фосфат

3. Фруктозо-6-фосфат Фруктозо-1,6-бисфосфат

4. Фруктозо-1,6-бисфосфат Дигидроксиацетонфосфат + Глицеральдегид-3-фосфат

5. Дигидроксиацетонфосфат Глицеральдегид-3-фосфат

молекулу глюкозы. Эту реакцию катализирует фермент гексокиназа . Помимо глюкозы гексокиназа фосфорилирует и другие моносахариды: маннозу, фруктозу. В печени присутствует изофермент глюкокиназа , который катализирует ту же реакцию, однако имеет более высокую константу Михаэлиса. Это значит, что его сродство к глюкозе ниже, чем у гексокиназы. Кофактором в реакции служат ионы магния Mg2+ . Они нейтрализуют отрицательный заряд двух остатков фосфорной кислоты в молекуле АТФ.

Биохимический смысл этой реакции заключается в том, чтобы «запереть» глюкозу в клетке, путем переноса на неё отрицательно заряженного остатка фосфорной кислоты. Таким образом, значительно снижается обратная диффузия глюкозы из клетки во внешнюю среду, поскольку отрицательно заряженные молекулы глюкозы электростатически отталкиваются отрицательно заряженными фосфолипидами мембран.

Г Реакция 2

В ходе второй реакции альдоза - глюкозо-6-фосфат - изомеризуется в кетозу

- фруктозу-6-фосфат. Катализирует эту реакцию фермент фосфоглюкоизомераза .

Д Реакция 3

Реакции гликолиза

Субстрат : фруктозо-6-фосфат

Продукт : фруктозо-1,6-бисфосфат

Фермент : фосфофруктокиназа

Кофактор: Mg 2+

Аллостерически активируется:

Аллостерически ингибируется:

АМФ, фруктозо-2,6-бисфосфат

АТФ, цитрат

Гормональная регуляция связана с аллостерической и осуществляется через би-

функциональный фермент (БИФ) и фруктозу-2,6-бисфосфат (его продукт) 1 .

Ключевые гормоны : инсулин, глюкагон, адреналин.

Фермент фосфофруктокиназа фосфорилирует фруктозу-6-фосфат до фрук- тозы-1,6-бисфосфата (употребление приставки бис- в данном случае говорит о том, что остатки фосфорной кислоты связаны с разными атомами углерода в молекуле фруктозы; употребление приставки ди- , означающей, что фосфатные группы связаны с одним атомом углерода, в данном случае ошибочно ).

Фосфофруктоизомераза - ключевой фермент в регуляции гликолиза, поскольку он катализирует одну из лимитирующих реакций гликолиза.

Е Реакция 4

1 Механизм регуляции фосфофруктокиназы с помощью БИФ и фруктозы-2,6- бисфосфата подробно рассматривается в разделе 2.9.

Альдолаза катализирует четвертую реакцию - расщепление фрутозы-1,6- бисфосфата до двух триоз: глицеральдегид-3-фосфата и дигидроксиацетонфосфата. Альдольное расщепление глюкозы-6-фосфата привело бы к образованию продуктов с разным числом атомов. В этом же случае число атомов у обоих продуктов равно трём. Это проясняет «смысл» второй реакции гликолиза (изомеризация глюкозы во фруктозу).

Ж Реакция 5

Один из продуктов четвертой реакции гликолиза - глицеральдегид-3-фосфат

- участвует в дальнейших реакциях. Другой продукт - дигидроксиацетонфосфат - в ходе пятой реакции изомеризуется в глицеральдегид-3-фосфат с помощью фермента триозофосфатизомеразы . Этот фермент является «каталитически идеальным»

- продукт формируется сразу же, как только субстрат контактирует с ферментом.

З Реакция 6

Шестая реакция гликолиза - это окисление и фосфорилирование глицераль-

дегид-3-фосфата, которые катализирует глицеральдегид-3-фосфатдегидрогеназа . В

Гликолиз - специфический путь катаболизма глюкозы, в результате которого происходит расщепление глюкозы с образованием двух молекул пирувата - аэробный гликолиз или две молекулы лактата - анаэробный гликолиз .

При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце,пируват превращается в лактат.Итак, гликолиз – не только главный путь утилизации глюкозы в клетках, но и уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия).

Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется АТФ. Суммарное уравнение гликолиза можно

представить следующим образом:

С6Н12О6 + 2АДФ + 2ФН –> 2СН3СН(ОН)СООН + 2АТФ + 2Н2О.

Глюкоза Молочная кислота

В анаэробных условиях гликолиз – единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе.

В аэробном и анаэробном гликолизе можно выделить два этапа.

А. Превращение глюкозы в две молекулы глицеральдегид-3-фосфата. Эта серия реакции протекает с потреблением АТФ.

Б. Превращение глицеральдегидфосфата в пируват или лактат. Эти реакции связаны с образованием АТФ. На этом этапе происходит реакция дегидрирования глицеральдегид-3- фосфата и образование NADH+H+.
3. Химизм и характеристика I этапа гликолиза.

Первой ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Глюкоза Гексокиназа Глюкозо-6-фосфат

Образование глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением значительного количества свободной энергии системы и может считаться практически необратимым процессом.

Наиболее важным свойством гексокиназы является ее ингибирование глюкозо-6-фосфатом, т.е. последний служит одновременно и продуктом реакции, и аллостерическим ингибитором.
Второй реакцией гликолиза является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат:

Глюкозо-6-фосфат Глюкозо-6-фосфат- изомераза Фруктозо-6-фосфат

Эта реакция протекает легко в обоих направлениях, и для нее нетребуется каких-либо кофакторов.
Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Фруктозо-6-фосфат 6-Фосфофруктокиназа Фруктозо-1,6-бисфосфат

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость

гликолиза в целом.

Четвертую реакцию гликолиза катализирует фермент альдолаза.

Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

Фруктозо-1,6-бисфосфат Альдолаза Диоксиацетонфосфат Глицеральдегид-3-фосфат

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. При повышении температуры реакция сдвигается в сторону большего образования триозофосфатов (дигидроксиацетонфосфата и глицеральдегид-3-фосфата)

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

Диоксиацетон- фосфат Триозофосфатизо-мераза Глицеральдегид-3-фосфат

Равновесие данной изомеразной реакции сдвинуто в сторону дигидроксиацетонфосфата: 95% дигидроксиацетонфосфата и около 5% глицеральдегид-3-фосфата. В последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов,а именно глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы дигидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза.

ГЛИКОЛИЗ (греч, glykys сладкий + lysis разрушение, распад) - сложный ферментативный процесс превращения глюкозы, протекающий в тканях животных и человека без потребления кислорода и приводящий к образованию молочной кислоты и АТФ.

C 6 H 12 O 6 + 2АДФ + 2Ф неорг. -> 2CH 3 CHOHCOOH + 2АТФ + 2H 2 O.

Именно благодаря Г. организм человека и животных может осуществлять ряд физиол, функций в условиях недостаточности кислорода.

В тех случаях, когда Г. протекает на воздухе или в атмосфере кислорода, говорят об аэробном Г. В анаэробных условиях Г.- единственный процесс в животном организме, поставляющий энергию. В аэробных условиях Г. является первой стадией окислительного превращения глюкозы и других углеводов до конечных продуктов этого процесса - углекислоты и воды. Процессами, аналогичными Г., у растений и микроорганизмов являются различные виды брожения (см.). Впервые термин «гликолиз» был предложен Лепином (Lepine) в 1890 г.

Последовательность реакций в процессе Г., также как и их промежуточные продукты, хорошо изучены. Реакции Г. катализируются одиннадцатью ферментами, большинство из которых выделены в гомогенном, кристаллическом или высоко очищенном виде и свойства которых тщательно изучены.

Наиболее интенсивен Г. в скелетных мышцах, в печени, сердце, мозге и других органах. В клетке Г. протекает в гиалоплазме.

Первой ферментативной реакцией (см. схему), открывающей цепь реакций Г., является реакция взаимодействия D-глюкозы с АТФ (2), приводящая к образованию глюкозо-6-фосфата и обеспечивающая возможность дальнейшего превращения глюкозы в процессе Г. Реакция катализируется гексокиназой (см.). Эта реакция сопровождается выделением значительного количества энергии и поэтому практически необратима. В скелетных мышцах и печени глюкозо-6-фосфат в больших количествах образуется также при катаболизме гликогена, т. е. при гликогенолизе.

Второй реакцией Г. (схема, реакция 2) является изомеризация глюкозо-6-фосфата во фруктозо-6-фосфат, катализируемая глюкозофосфатизомеразой, не нуждающейся в присутствии каких-либо кофакторов. Образующая смесь двух гексозомонофосфатов, состоящая приблизительно на 80% из глюкозо-6-фос-фата и на 20% из фруктозо-6-фосфата с примесью нек-рого количества других фосфомоноэфиров, носит название эфира Эмбдена. Такая же смесь, но состоящая из глюкозо-6-фосфата почти наполовину, называется эфиром Робисона.

Фруктозо-6-фосфат, далее в фосфофруктокиназной реакции (схема, реакция 3) за счет АТФ фосфорилируется во фруктозо-1,6-дифосфат. Фруктозодифосфат является специфическим субстратом именно для Г., тогда как предыдущие реакции характерны не только для Г., но и для окислительного распада углеводов. Фосфофруктокиназа - регуляторный фермент, имеющий на молекуле 7, а по данным некоторых авторов, 12 центров связывания субстратов, кофакторов и ингибиторов. Фермент активируется ионами двухвалентных металлов, неорганическим фосфатом, АДФ, АМФ, циклическим 3",5"-АМФ. Активность фермента также повышается в присутствии фруктозо-6-фосфата и фруктозо-1,6-дифосфата. Ингибируют фермент АТФ и цитрат.

Реакция, катализируемая фосфофруктокиназой, является наиболее медленно текущей реакцией Г., определяющей скорость всего процесса. Главными факторами в клетке, контролирующими фосфофруктокиназу, являются относительные концентрации АТФ и АДФ. Когда величина отношения АТФ/АДФ + Ф неорг. значительна, что достигается в процессе окислительного фосфорилирования (см.), происходит угнетение фосфофруктокиназы, и Г. замедляется. При снижении величины отношения АТФ/АДФ + Ф неорг. интенсивность Г. повышается. В неработающей мышце активность фосфофруктокиназы низка, что объясняется высокой концентрацией АТФ (см. Аденозинтрифосфорная кислота). В процессе работы, когда происходит интенсивное потребление АТФ, активность фосфофруктокиназы увеличивается, что приводит к интенсификации Г., а следовательно, и к усиленному образованию АТФ. При диабете, голодании и других условиях, вызывающих переключение энергетического обмена на использование жиров, содержание цитрата в клетке может возрасти в несколько раз. Величина торможения фосфофруктокиназы цитратом достигает при этом 70-80%.

Следующий этап Г. катализирует фруктозодифосфатальдолаза (схема, реакция 4). Фруктозо-1,6-дифосфат расщепляется на две фосфотриозы: диоксиацетонфосфат и глицеральдегид-3-фосфат. Под влиянием триозофосфатизомеразы (схема, реакция 5) происходит взаимопревращение, фосфотриоз. Равновесие этой реакции сдвинуто в сторону образования диоксиацетонфосфата: на 96% диоксиацетонфосфата приходится всего 4% глицеральдегид-3-фосфата, но именно он и участвует в дальнейших превращениях в процессе Г. Благодаря высокой активности триозофосфатизомеразы преимущественное образование диоксиацетонфосфата не лимитирует скорости Г. в целом. Образованием глицеральдегид-3-фосфата (3-фосфоглицеринового альдегида) заканчивается первая стадия Г.

Вторая стадия Г. является общим путем превращения всех углеводов и рассматривается как наиболее сложная и важная часть процесса, приводящая к образованию АТФ. Центральной реакцией Г. является реакция гликолитической оксидоредукции, сопряженной с фосфорилированием,- реакция окисления 3-фосфоглицеринового альдегида (схема, реакция 6), катализируемая глицеральдегидфосфатдегидрогеназой. Этот фермент состоит из четырех идентичных субъединиц, каждая из которых представляет собой полипептидную цепь с 330 аминокислотными остатками. Каждая субъединица несет одну молекулу НАД+ и 4 свободные SH-группы. В ходе реакции, идущей в присутствии неорганического фосфата, НАД+ выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. При восстановлении НАД+ происходит связывание глицеральдегид-3-фос-фата с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь, богатая энергией, непрочна и расщепляется под влиянием неорганического фосфата, при этом образуется 1,3-дисфосфоглицериновая к-та (1,3-дифосфоглицерат). Последующая реакция (схема, реакция 7) приводит к передаче богатого энергией фосфатного остатка на молекулу АДФ с образованием АТФ и 3-фосфоглицериновой к-ты (3-фосфоглицерата). Для реакции, катализируемой фосфоглицераткиназой, необходимы ионы двухвалентных металлов: Mg 2+ , Mn 2+ или Ca 2+ . Далее (схема, реакция 8) 3-фосфоглицериновая к-та превращается в 2-фосфоглицериновую к-ту (2-фосфоглицерат). Реакцию катализирует фосфоглицерат-фосфомутаза в присутствии двух кофакторов: иона Mg 2+ и 2,3-дифосфоглицериновой к-ты. Следующий этап Г.- образование фосфоенолпирувата, богатого энергией предшественника АТФ (схема, реакция 9). Превращение 2-фосфоглицериновой к-ты (2-фосфоглицерата) в фосфоенолпируват осуществляется в результате реакции дегидратации, катализируемой фосфопируват-гидратазой. Фермент, катализирующий эту реакцию, нуждается в Mg 2+ , Mn 2+ , Zn 2+ или Cd 2+ , антагонистами которых являются ионы Ca 2+ или Sr 2+ . Реакцию между фосфоенолпируватом и АДФ (схема, реакция 10) с образованием пировиноградной к-ты (пирувата) и АТФ катализирует пируваткиназа, требующая для проявления своей активности ионов Mg 2+ или Mn 2+ и K + ; Ca 2+ выступает как конкурентный антагонист этих ионов. Для максимальной активности пируваткиназа нуждается также в присутствии одновалентных катионов K + , Rb + или Cs + , антагонистами которых являются катионы Na + и Li + . Обратимое восстановление пирувата в молочную к-ту (лактат) за счет восстановленного НАД + (НАДН) является конечным этапом Г. (схема, реакция 11). Реакцию катализирует лактатдегидрогеназа (см.).

Благодаря трем необратимым реакциям - гексокиназной, фосфофруктокиназной и пируваткиназной Г. сам по себе является необратимым процессом (его равновесие сдвинуто в сторону образования молочной к-ты). На I стадии Г. затрачиваются две молекулы АТФ, на II стадии образуются четыре молекулы АТФ. Т. о., энергетическая эффективность Г. (всего две молекулы АТФ на одну молекулу глюкозы) сравнительно низка. Тем не менее роль Г. велика, т. к. только благодаря ему организм может осуществлять ряд физиол, функций в условиях недостаточного снабжения тканей и органов кислородом. Такие условия создаются, напр., в энергично работающей скелетной мышце. Присутствие кислорода тормозит Г. (явление, называемое эффектом Пастера - см. Пастера эффект). В сердечной мышце в процессах образования энергии гликолитический путь распада углеводов занимает небольшое место. Активность ферментов Г. в сердце значительно ниже, чем в скелетных мышцах. Реальная скорость Г. меняется в зависимости от снабжения сердечной мышцы кислородом и интенсивности в ней окислительных процессов. Но даже при наиболее оптимальных условиях снабжения кислородом в мышце сердца всегда идет Г. Субстраты гликолитических реакций (фосфорилированные сахара, пируват, молочная к-та) используются сердечной мышцей в процессах пластического обмена веществ и в цикле Трикарбоновых к-т (см. Трикарбоновых кислот цикл) в качестве субстратов окисления. Большую роль Г. приобретает в сердце в условиях дефицита кислорода. Бурный аэробный Г. происходит в опухолях, где он является основным источником энергии. Опухолевые ткани характеризуются отсутствием эффекта Пастера. В них регулирующая роль фосфофруктокиназы утрачивается.

Нормальное течение Г. возможно только в том случае, если в ткани присутствуют АДФ, субстраты для фосфоглицераткиназной и пируваткиназной реакций, а также НАД и неорганический фосфат, необходимые для реакции гликолитической оксидоредукции (угнетение гликолитической оксидоредукции в сердечной мышце, обусловленное уменьшением содержания НАД, наблюдалось в условиях экспериментального миокардита). Основной, лимитирующей скорость Г. реакцией является реакция, катализируемая фосфофруктокиназой (см. схему, реакция 3). Вторым этапом, лимитирующим скорость и регулирующим Г., после фосфофруктокиназной реакции является гексокиназная реакция (см. схему, реакция 1). Широкий изоферментный спектр этого фермента обусловливает возможность тонкой регуляции Г. на его начальном, пусковом этапе. Динамичный характер связи гексокиназы с митохондриями и микросомами, а также изменения свойств этого фермента при взаимодействии с субклеточными структурами делают механизм регуляции Г. очень чувствительным.

Отсутствие регулирующей роли фосфофруктокиназы и крайне высокая активность гексокиназы превращают злокачественную опухоль в мощный насос, непрерывно извлекающий глюкозу из организма. При этом интенсивность Г. такова, что перепад между концентрацией глюкозы в артериальной крови и ткани опухоли достигает 60-80 мг% (артериальная кровь) против нуля (опухолевая ткань).

В норме контроль Г. осуществляется также лактатдегидрогеназой (ЛДГ) и ее изоферментами (см. Лактатдегидрогеназа), которые характеризуются специфической локализацией в органах и тканях. В тканях с аэробным метаболизмом (ткани сердца, почек, эритроциты) преобладают ЛДГ-1 и ЛДГ-2. Эти изоферменты ингибируются даже небольшими концентрациями пирувата, что препятствует образованию молочной к-ты и способствует более полному окислению пирувата в цикле Трикарбоновых к-т. В тканях человека, в значительной степени зависимых от энергии, образующейся в процессе Г. (скелетные мышцы), главными изоферментами ЛДГ являются ЛДГ-4 и ЛДГ-5. Активность ЛДГ-5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ-1. Преобладание изоферментов ЛДГ-4 и ЛДГ-5 обусловливает интенсивный анаэробный Г. с быстрым превращением пирувата в молочную к-ту. Заметное увеличение относительного содержания ЛДГ-5 было отмечено при адаптации организмов и клеток в культурах к гипоксии. Во многих тканях человека (ткани селезенки, поджелудочной и щитовидной желез, надпочечников, лимф, узлов) преобладает изофермент ЛДГ-3. В тканях эмбриона и плода человека присутствуют все 5 изо-ферментов лактатдегидрогеназы, среди которых преобладает ЛДГ-3. Вскоре после рождения у ребенка картина распределения изоферментов в органах и тканях становится такой же, как и у взрослого человека. Изменение изоферментного спектра в эмбриогенезе особенно выражено в скелетных мышцах. При различных миопатиях (см.) наблюдается аномальное распределение изоферментов ЛДГ: увеличение одних и уменьшение или даже полное исчезновение других. При прогрессирующей мышечной дистрофии (болезнь Дюшенна) преобладают изоферменты ЛДГ-1, ЛДГ-2 и ЛДГ-3. При других формах мышечной дистрофии (миотоническая дистрофия, дерматомиозит, болезнь Верднига - Гоффманна) характерно уменьшение или даже отсутствие ЛДГ-5 в скелетных мышцах, что коррелирует со сниженным образованием молочной к-ты у больных этими формами миопатий после физ. работы. При ряде патол, состояний благодаря увеличению проницаемости клеточных мембран изо-ферменты лактатдегидрогеназы в избыточном количестве поступают в кровь. Активность лактатдегидрогеназы и характер распределения ее изоферментов в сыворотке крови специфически изменяются при инфаркте миокарда (см.), заболеваниях печени и желчевыводящих путей, ревматизме (см.). В клинике для дифференциальной диагностики этих заболеваний применяют простые методы определения относительного распределения изоферментов лактатдегидрогеназы в сыворотке крови, основанные на их различной электрофоретической подвижности.

В организме человека и животных существуют ферментативные механизмы, обеспечивающие протекание Г. в обратном направлении, т. е. синтез глюкозы, а также гликогена из молочной к-ты. Этот процесс носит название глюконеогенеза; он интенсивно протекает в печени, куда в больших количествах током крови доставляется молочная к-та. Энергия для осуществления этого процесса образуется также в печени в результате полного окисления нек-рой части (ок. 15%) молочной к-ты. Предшественниками глюкозы в глюконеогенезе могут быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла Трикарбоновых к-т, а также так наз. гликогенные аминокислоты.

Большинство стадий глюконеогенеза представляет собой обращение реакций Г. Три реакции Г.- гексокиназная, фосфофруктокиназная и пируваткиназная - необратимы, поэтому глюконеогенез идет в обход этих реакций.

Первую реакцию глюконеогенеза - превращение молочной к-ты в пировиноградную - катализирует лактатдегидрогеназа. Синтез фосфоенолпирувата из пирувата осуществляется в несколько этапов. Первый этап локализуется в митохондриях.

Пируват под влиянием пируваткарбоксилазы (КФ 6.4.1.1), активной только в присутствии ацетилкофермента А, карбоксилируется при участии CO 2 с образованием оксалоацетата. В реакции участвует АТФ, поэтому продуктами реакции наряду с оксалоацетатом являются АДФ и ортофосфат:

Оксалоацетат в результате декарбоксилировании и фосфорилирования под влиянием фосфопируваткарбоксилазы (КФ 4.1.1.32) превращается в фосфоенол пируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат или инозинтрифосфат:

Фосфопируваткарбоксилаза присутствует как в гиалоплазме, так и в митохондриях, но распределение фермента у человека и животных различно. У морских свинок, кроликов, овец, коров и у человека фосфопируваткарооксилаза присутствует в обеих фракциях. В эмбриональной печени крыс и морских свинок, не способной к глюконеогенезу, присутствует только митохондриальный фермент. В гиалоплазме активность фосфопируваткарбоксилазы появляется только в постнатальный период; одновременно печень становится способной к глюконеогенезу.

Поскольку в глюконеогенезе участвует фосфопируваткарбоксилаза превращение оксалоацетата в фосфоенолпируват происходит именно в гиалоплазме. Оксалоацетат, образовавшийся в митохондриях, не может перейти в гиалоплазму, т. к. мембрана митохондрий для него непроницаема. В митохондриях оксалоацетат восстанавливается в яблочную к-ту (малат), к-рая способна диффундировать из митохондрий в гиалоплаз-му, где и окисляется с образованием оксалоацетата, который, в свою очередь, превращается в фосфоенол пируват.

Последующие реакции глюконеогенеза, катализируемые ферментами Г., приводят к образованию фруктозо-1 ,6-дифосфата. Превращение фруктозо-1 ,6-дифосфата во фруктозо-6-фосфат, а затем и глюкозо-6-фосфата в глюкозу катализируют специфические фосфатазы, гидролитически отщепляющие неорганический фосфат.

При глюконеогенезе фруктозо-1,6-дифосфатаза (гексозодифосфатаза; КФ 3.1.3.11) катализирует ключевую реакцию D-фруктозо-1,6-дифосфат + H 2 O -> D-фруктозо-б-фосфат + ортофосфат) и соответственно действие, к-рое оказывает на нее АТФ и АМФ, противоположно их действию на фосфофруктокиназу (см. выше): гексозодифосфатаза активируется под влиянием АТФ и ингибируется АМФ. Когда величина отношения АТФ/АДФ низка, в клетке происходит расщепление глюкозы, когда эта величина высока - расщепление глюкозы прекращается. В аэробных условиях значительно эффективнее, чем в анаэробных, из клетки удаляется неорганический фосфат й АДФ и накапливается АТФ, что приводит к подавлению Г. и стимуляции глюконеогенеза. Пируваткарбоксилаза также чувствительна к величине отношения АТФ/АДФ, т. к. ингибируется АДФ. Ацетил-КоА активирует пируваткарбоксилазу.

В регуляции Г. и глюконеогенеза большую роль играет инсулин (см.). При недостаточности его происходит повышение концентрации глюкозы в крови (гипергликемия), избыточное выведение глюкозы с мочой (глюкозурия) и уменьшение содержания гликогена в печени. При этом мышцы утрачивают способность использовать в процессе Г. глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов (биосинтеза белков, биосинтеза жирных к-т из глюкозы) наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом все перечисленные метаболические нарушения исчезают: нормализуется проницаемость для глюкозы мембран мышечных клеток, восстанавливается соотношение между Г. и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как регулятор синтеза ферментов. Он является индуктором образования ключевых ферментов Г.: гексокиназы, фосфофруктокиназы и пируваткиназы. Одновременно инсулин действует как репрессор синтеза ферментов глюконеогенеза.

Клин, признаки преобладания Г. над аэробной фазой распада углеводов наблюдаются чаще всего при гипоксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозами, в результате относительной гипоксии при чрезмерной мышечной работе. При усилении Г. происходит накопление пирувата и лактата с соответствующим закислением тканей, изменением кислотно-щелочного равновесия, уменьшением щелочных резервов. У больных сахарным диабетом активация процессов Г. и недостаточный ресинтез лактата в гликоген печени также нередко приводят к увеличению содержания в крови лактата и пирувата; в этих случаях ацидоз может достигать высокой степени с развитием диабетической молочнокислой комы. Торможение ресинтеза гликогена из лактата и пирувата, образовавшихся в результате Г., наблюдается при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т. п.), поэтому увеличение содержания в сыворотке крови лактата и пирувата может служить показателем нарушения функции печени.

Высокая интенсивность Г. в опухолевых тканях используется для определения чувствительности опухолей к нек-рым противоопухолевым препаратам: подавление Г. в срезах опухоли под влиянием исследуемого химиопрепарата свидетельствует о чувствительности к нему данной опухоли.

Библиография: Дэгли С. и Никольсон Д. Е. Метаболические пути, пер. с англ., М., 1973, библиогр.; Л e н и н д-жер А. Биохимия, пер. с англ., М., 1976; Проблемы медицинской химии, под ред. В. С. Шапота и Э. Г. Ларского, М., 1973, библиогр.; УилкинсонДж. Изофер-менты, пер. с англ., М., 1968.

Г. А. Соловьева, Г. К. Алексеев.

Это главный путь утилизации глюкозы- важнейший физиологический процесс, осуществляющийся в цитоплазме практически всех живых, как прокариотических, так и эукараотических, клеток. Гликолиз - это анаэробный (в отсутствие кислорода) процесс расщепления углеводов с освобождением энергии. В растениях в результате гликолиза образуется пируват , молекулы которого далее окисляются до двуокиси углерода и воды в цикле Кребса и электроннотранспортной цепи.

Конечные продукты, преимущественно: лактат в анаэробных условиях, CO 2 и H 2 O в аэробных.

Минимальные потребности в глюкозе имеют все ткани, но у некоторых из них (например, тканей мозга, эритроцит ов) эти потребности весьма значительны. Гликолиз протекает во всех клетках. Это уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия).

Уже на ранних этапах изучения метаболизма углеводов было установлено, что процесс брожения в дрожжах во многом сходен с распадом гликоген а в мышце. Исследования гликолитического пути проводили именно на этих двух системах.

При изучении биохимических изменений в ходе мышечного сокращения было установлено, что при функционировании мышцы в анаэробной (бескислородной) среде происходит исчезновение гликоген а и появление пируват а и лактат а в качестве главных конечных продуктов. Если затем обеспечить поступление кислорода, наблюдается "аэробное восстановление": образуется гликоген, и исчезают пируват и лактат. При работе мышцы в аэробных условиях накопления лактата не происходит, а пируват окисляется далее, превращаясь в CO 2 , и H 2 O. В анаэробных условиях реокисление NADH путем переноса восстановительных эквивалентов на дыхательную цепь и далее на кислород происходить не может. Поэтому NADH восстанавливает пируват в лактат. Реокисление NADH путем образования лактата обеспечивает возможность протекания гликолиза в отсутствие кислорода, поскольку поставляется NAD+ необходимый для глицеральдегид-3-фосфатдегидрогеназной реакции. Таким образом, в тканях, функционирующих в условиях гипоксии , наблюдается образование лактата ( Пентозофосфатный путь, гликолиз, глюконеогенез: метаболическая карта). Это в особенности справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Образующийся лактат может быть обнаружен в тканях, крови и моче. Гликолиз в эритроцит ах даже в аэробных условиях всегда завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии, содержащие ферментные системы аэробного окисления пирувата. Эритроциты млекопитающих уникальны в том отношении, что около 90% их потребностей, в энергии обеспечивается гликолизом. Помимо скелетной мышцы и эритроцитов ряд других тканей ( мозг , желудочно-кишечный тракт , мозговой слой почек , сетчатка и кожа) в норме частично используют энергию гликолиза и образуют молочную кислоту. Печень, почки и сердце обычно утилизируют лактат, но в условиях гипоксии образуют его.

жэжэжэжээжэ

Как происходит окисление глюкозы в клетке? В этом процессе участвует множество ферментов. Ферментативное расщепление и окисление глюкозы называют гликолизом (греч. glycos - сладкий, lysis - расщепление). Ферменты, окисляющие глюкозу, составляют своего рода ферментативный "конвейер". Гликолиз происходит в цитоплазме. При этом одна шестиуглеродная молекула глюкозы С6Н12О6 ступенчато расщепляется и окисляется при участии ферментов до двух трехуглеродных молекул пировиноградной кислоты В этом превращении глюкозы последовательно участвуют девять ферментов. Если мы сравним число атомов в двух молекулах пировиноградной кислоты СН3СОСООН и в молекуле глюкозы С6Н]206, то увидим, что в процессе гликолиза молекула глюкозы не только расщепляется на две трехуглеродные молекулы, но и теряет четыре атома водорода, т. е. происходит окисление ее. Акцептором водорода (и электронов) в этих реакциях служат молекулы никотинамидадениндинуклеотида (