Вычисление изменения энтропии в различных процессах. Изменение энтропии в термодинамических процессах

Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH 4NO 3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S ) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики ).

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W . Поскольку число частиц в системе велико (число Авогадро N A = 6,02∙10 23), то энтропия пропорциональна натуральному логарифму термодинамической вероятности состояния системы W :

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль –1∙K –1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T . Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔS пл = ΔH пл/T пл Для химической реакции изменение энтропии аналогично изменению энтальпии

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q/T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Соединение


(Дж∙моль –1∙K –1)

Соединение


(Дж∙моль –1∙K –1)

C (т)алмаз

C (т)графит

изо-C 4H 10(г)

Таблица 4.1.

Стандартные энтропии некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

  • Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
  • Изотопного состава (H 2O и D 2O).
  • Молекулярной массы однотипных соединений (CH 4, C 2H 6, н-C 4H 10).
  • Строения молекулы (н-C 4H 10, изо-C 4H 10).
  • Кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру T ΔS количественно оценивает эту тендецию и называется энтропийным фактором .

Задачи и тесты по теме "Химическая термодинамика. Энтропия"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Второе начало термодинамики имеет несколько формулировок. Формулировка Клаузиуса:невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.

Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Невозможно построить машину (вечный двигатель второго рода), которая совершала бы работу только за счет получения теплоты из окружающей среды.

Формулировка Больцмана: Энтропия - это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед - в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится.Энтропия не может уменьшаться в замкнутых системах - то есть, в системах, не получающих внешней энергетической подпитки.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

где - любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Энтропия идеальных газов

Для получения рассчетного выражения изменения энтропии идеальных газов воспользуемся первым законом термодинамики, в котором теплота определяется с использованием изменения энтальпии

Разность энтропий идеального газа в конкретных двух состояниях можно получить интегрированием выражения (4.59)

Для определения абсолюного значения энтропии идеального газа необходимо зафиксировать начало ее отсчета любой парой термических параметров состояния. Например, приняв s 0 =0 при Т 0 и Р 0 , воспользовавшись уравнением (4.60), получим

Выражение (4.62) свидетельствует о том, что энтропия идеального газа есть параметр состояния, поскольку ее можно определить через любую пару параметров состояния. В свою очередь, поскольку энтропия сама является параметром состояния, используя ее в паре с любым независимым параметром состояния, можно определить любой другой параметр состояния газа.

Можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величины количества теплоты, отданного рабочим телом холодильнику, к величине количества теплоты, принятого от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение: . Отношение Лоренц назвал приведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

Используя первое начало термодинамики для обратимых процессов, и деля обе части этого равенства на температуру, получим:

(3.70)

Теплота не может самопроизвольно перейти от более холодного тела к более нагретому без каких-либо других изменений в системе.

В предыдущем разделе мы исходили из того основного предположения, что для любой системы существует параметр, называемый энтропией и обозначаемый S. При малых величинах теплового взаимодействия соответствующее дифференциальное изменение энтропии dS составляет . Используем далее это определение для вычисления изменений энтропии в некоторых простых и известных процессах.

Изменение энтропии при таянии льда. Предположим, что в жаркий летний день мы принесли на пикник термос, наполненный смесью льда и воды. Поскольку изоляция термоса не идеальна, лед будет постепенно таять. Однако таяние происходит медленно, температура в термосе будет оставаться практически неизменной и равной 0°С. Подсчитаем изменение энтропии, соответствующее таянию 1 моль (или 18 г) льда. Табличное значение теплоты плавления льда составляет 79,67 кал/г, что дает около 1434 кал/моль. Тогда можно записать

Как и ранее, обозначает просто суммирование бесконечно малых величин - интегрирование (или суммирование) всех величин , соответствующих каждому малому количеству теплоты . Интегрирование выполняется в этом случае особенно просто потому, что температура Т не меняется в ходе процесса плавления. Поэтому множитель 1/Т можно вынести из-под знака интеграла, так что он становится просто множителем при последнее выражение представляет собой фактически теплоту фазового перехода (плавления) льда кал/моль. Соотношение (19) означает, что энтропия 1 моль воды при 273 К на 5,27 кал/К превышает энтропию 1 моль льда при той же температуре.

Верь, когда растает лед. Энтропия возрастет.

Наоборот, если у воды при температуре 273 К отобрать достаточно теплоты - чтобы образовался 1 моль льда при 273 К, энтропия системы понизится на .

Заметим, что всюду в этом разделе мы использовали абсолютную температуру по Кельвину в знаменателе отношения . Можно было бы использовать и абсолютную шкалу Рэнкина, если измерять при этом количество теплоты в б.т. е. Очевидно, что в знаменателе выражения нельзя использовать температуры по шкалам Цельсия или Фаренгейта (как это иногда пытаются делать даже подготовленные студенты). Так, например, используя шкалу Цельсия, в рассматриваемом случае мы пришли бы к абсурдному результату (знаменатель выражения обратился бы в нуль). Заметим, что единицы, в которых выражается изменение энтропии, совпадают с единицами, в которых измеряется молярная теплоемкость Изменение энтропии при таянии 1 моль льда при точке замерзания в нормальных условиях составляет 5,27 кал/(моль К).

Изменение энтропии при кипении воды. Другой хорошо знакомый процесс, идущий при определенной температуре, - это переход жидкой воды в пар при давлении 1 атм. Температура, при которой вода кипит при нормальных условиях, равна по определению 100°С, или 373 К. Теплота испарения при такой температуре составляет 539 кал/г, или 9702 кал/моль. Тогда изменение энтропии, соответствующее испарению 1 моль воды при нормальных условиях, равно

Это вычисление оказалось столь простым потому, что температура не менялась в ходе процесса.

Заметим, что изменение энтропии в процессе испарения воды почти в 5 раз превышает изменение энтропии в процессе таяния льда. Значение несколько превышает обычные для подобных ситуаций значения и указывает на необычные свойства такого вещества, как вода. У многих «нормальных» (неполярных) жидкостей изменение энтропии при испарении составляет Это правило было получено эмпирически английским физиком Фредериком Троутоном (1863-1922) и носит название «правило Троутона». Оно дает способ оценки теплоты испарения данного вещества, если известна температура, при которой оно кипит при нормальных условиях.

Чтобы найти приближенное значение теплоты испарения, достаточно умножить температуру кипения (выраженную в Кельвинах) на постоянную Гроутона.

Изменение энтропии в процессе изотермического расширения идеального газа. Существует еще один процесс при постоянной температуре, который уже не раз встречался нам ранее, - это процесс обратимого изотермического расширения идеального газа. Если наряду с тепловым имеется лишь обычное механическое взаимодействие (так что элементарная работа выражается формулой первое начало термодинамики для 1 моль идеального газа можно записать в виде

(здесь учтено, что ). Используя уравнение pV = RT, можно при dT = 0 (условие постоянства температуры) написать

Интегрировать это выражение нам приходилось в гл. 4, так что здесь сразу приведем результат:

Поскольку температура T остается постоянной, выражение для соответствующего изменения энтропии имеет вид

Как известно, газовая постоянная R имеет размерность кал/(моль К), а множитель, содержащий логарифм, - безразмерное число, так что размерности в левой и правой частях соотношения (24) совпадают. Таким образом, увеличение объема (т. е. расширение) при постоянной температуре сопровождается ростом энтропии.

Вернемся к случаю кипения воды. Пусть испарился 1 моль воды; 1 моль идеального газа, как мы помним, при нормальных условиях (давлении 1 атм и температуре 273 К) занимает объем около 22 400 см3. При 373 К соответствующий объем будет равен 22 400 (373/273), или примерно 30 600 см3. До испарения 1 моль жидкости занимал объем около таким образом, отношение составляет Согласно равенству (24), изменение энтропии, соответствующее изменению объема за счет испарения, составляет R ln 1700. Учитывая, что значение R примерно равно , искомое изменение энтропии составляет примерно 14,88 кал/(моль К).

Подсчитывая в предыдущем разделе полное изменение энтропии в течение всего процесса испарения 1 моль воды, мы получили значение 26,0 кал/(моль К). Как мы убедились теперь, чуть более половины этого значения связано с изменением объема при переходе жидкости в пар.

Изменения энтропии, обусловленные изменениями температуры. До сих пор все наши вычисления изменения энтропии проводились для тепловых взаимодействий при постоянной температуре. Рассмотрим теперь более обычный и несколько более сложный случай, когда обратимое нагревание приводит к изменению температуры. Если нагревание происходит при постоянном объеме, то. согласно определению удельной теплоемкости при постоянном объеме , имеем . Тогда

Интегрируя это выражение по конечному интервалу температур, получаем

Здесь предполагалось, что теплоемкость не зависит от температуры и ее можно вынести за знак интеграла. Существенно, что, отождествляя

мы снимаем ограничеиие об обратимости процесса нагревания, а также об однородности температуры в процессе нагревания. Нам необходимо знать температуру системы только в начале и в конце процесса нагревания. Иными словами, существенно лишь, чтобы тепловое равновесие существовало в начальном и конечном состояниях: промежуточные состояния не играют роли.

В более обычном и практически значительно легче осуществляемом случае нагревания при постоянном давлении имеем . Буквально повторяя все приведенные выше рассуждения, получаем

2. Нагревание воды при 1 атм от 273 К до 373 К:

3. Переход вода-пар при 1 атм и 373 К:

Таким образом, результирующее изменение энтропии при превращении 1 моль льда, имеющего температуру 273 К, в пар при 373 К составляет

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************