Защита от статического и атмосферного электричества. Цп автоматизированные системы управления и промышленная безопасность

Защита от статического и атмосферного электричества, молниезащита.
Статическое электричество – совокупность явлений, связанных с возникновением, сохранением и релаксацией зарядов. Заряды возникают при трении, дроблении, облучении УФ, химических реакциях. Длительное время заряды сохраняются на поверхности полупроводников и диэлектриков с удельным сопротивлением ρ≥105 Ом*м. релаксация зарядов происходит в следующих формах – растекание по поверхности и в объёме тела, стекание зарядов с поверхности тела в воздух. Опасность статического электричества заключается в возможности воспламенения горючих смесей, находящихся в помещении. Меры защиты:
1.снижение силового воздействия
2.снижение скоростей перемещения слоёв сыпучих материалов и жидкостей
3.изготовление контактирующих тел из материалов с близким удельным сопротивлением
4.нанесение на поверхность токоведущих тел лакокрасочных покрытий
5.обработка антистатиками
6.увеличение относительной влажности выше 65%
7.заземление оборудования
8.ионизация воздуха вблизи мест образования зарядов с помощью нейтрализаторов различного типа
9.токопроводящая обувь, полы, обивки стульев
10.легкосъёмные токопроводящие браслеты
Поражающие факторы атмосферного электричества.
1.прямой удар молнией и защита с помощью молниеотводов
2.явление электромагнитной индукции, т.е. вследствие возникновения, мощного переменного во времени электрического поля, способного индуцировать ЭДС различной величины в металлических конструкциях, при сближении которых могут происходить электрические разряды на заземлённые предметы, след-но, возникновение опасного электротравматизма, воспламенение горючих смесей и т.п. для защиты в местах сближения металлических конструкций до 20 см между ними необходимо устраивать металлические перемычки
3.электростатическая индукция, т.е. наведение заряда противоположного знака по сравнению с зарядом облака на металлических предметах, изолированных от земли. Релаксация зарядов с этих предметов происходит на ближайшие заземлённые предметы, след-но, электротравматизм, воспламенение.
4.занос высоких потенциалов по металло-комуникациям, входящих в здание. Защита: заземление крюков фазных проводов.
Все здания по опасности поражения молнией подразделяются на 3 категории:
--здания, в которых находятся горючие вещества, воспламенение которых может повлечь значительные разрушения и угрозу жизни людей. Т.е. здания, в которых есть помещения В-I и В-II.
---- воспламенение которых не может повлечь значительного ущерба, т.е. здания В-Iа, В-Iб, В-IIа.
- Все остальные
В зданиях 1 и 2 категории необходима защита от всех 4 поражающих факторов молниезащита типа А. В зданиях 3 категории необходимо устройство молниеотводов (А или Б) и защита от заноса высоких потенциалов. Молниеотводы бывают стержневые, сетчатые, сетчатые с ячейками 6х6, тросовые. Кроме того бывают одиночными и многократными.
1 – опора
2 – молниеприёмник
3 - токоотвод
4 – заземлитель

  • Глава 1 управление безопасностью жизнедеятельности. Правовые и организационные основы
  • Предмет и содержание курса «Безопасность жизнедеятельности»
  • 1.2. Научный метод курса бжд и связь с другими науками
  • 1.3. Технический прогресс и новые проблемы безопасности жизнедеятельности. Проблемы технотронной цивилизации
  • 1.4. Роль безопасности труда в повышении производительности труда и влияние его на экономические показатели производства
  • 1.5. Экономические последствия и материальные затраты на охрану окружающей среды
  • 1.6. Правовые и нормативно-технические основы безопасности жизнедеятельности
  • 1.7. Организационные основы управления безопасностью жизнедеятельности
  • Государственный и общественный надзор по охране труда
  • 1.9. Планирование и финансирование мероприятий по безопасности жизнедеятельности
  • 1.10. Международное сотрудничество в области безопасности жизнедеятельности
  • Глава 2 основы физиологии труда и комфортные условия жизнедеятельности
  • 2.1. Факторы, определяющие условия обитания человека
  • Классификация основных форм человеческой деятельности
  • 2.3. Категорирование условий труда и работ
  • Показатели условий труда по трудовой нагрузке
  • Показатели условий труда по опасности
  • Показатели условий труда по вредности
  • 2.4. Обеспечение комфортных условий труда: микроклимат помещения
  • 2.5. Освещение производственных помещений. Искусственное и естественное освещение
  • Глава 3 производственный травматизм и профзаболевания
  • Производственный травматизм и профзаболевания: причины и способы снижения
  • 3.2. Учет и расследование несчастных случаев на производстве
  • 3.3. Размер вреда, подлежащего возмещению потерпевшему в результате трудового увечья
  • Глава 4 воздействие негативных факторов на человека и техносферу
  • 4.1. Вредные вещества и методы защиты
  • 4.2. Ионизирующие излучения
  • 4.3. Электромагнитные поля
  • 4.4. Электрический ток
  • 4.5. Защита от статического и атмосферного электричества
  • 4.6. Производственный шум
  • 4.7. Производственные вибрации
  • Глава 5 пожаровзрывобезопасность на производстве
  • Пожарная безопасность производств: физика и химия горения, классификация процессов горения, теории горения, показатели горючести веществ
  • Категорирование помещений и зданий по взрывопожарной и пожарной опасности
  • Категорирование пожаровзрывоопасности производственных помещений
  • 5.3. Классификация взрыво- и пожароопасных зон
  • Классификация пожароопасных зон
  • Классификация взрывоопасных зон
  • 5.4. Категории наружных установок по пожарной опасности
  • Категории наружных установок по пожарной опасности
  • 5.5. Выбор взрыво- и пожарозащищенного электрооборудования
  • Категории взрывоопасных смесей газов и паров с воздухом (гост 12.1.011-78 (1991))
  • Группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения
  • Уровни взрывозащиты электрооборудования
  • Выбор температурных классов электрооборудования
  • 5.6. Категорирование блоков по взрывоопасности
  • Категорирование технологических блоков
  • 5.7. Принцип выбора средств тушения пожаров. Автоматические средства тушения пожаров
  • 5.8. Способы оповещения о пожаре: извещатели и сигнализация
  • Глава 6 безопасность технологических процессов
  • 6.1. Безопасность технологических процессов: этапы создания технологических процессов, потенциальные опасности, требования и направления безопасности
  • 6.2. Технологический регламент и его содержание
  • 6.3. Роль автоматизации для обеспечения безопасности
  • 6.4. План локализации (ликвидации) аварийных ситуаций
  • Раздел 1. «Технология и аппаратурное оформление блока»;
  • 6.6. Сосуды, работающие под давлением
  • Группы сосудов, работающих под давлением
  • 6.7. Инженерно-технические средства защиты. Защитные устройства
  • 6.8. Индивидуальные средства защиты
  • Глава 7 организация экологического контроля, надзора и управления в российской федерации
  • Экологичность технологических процессов
  • Создание безотходных технологических процессов
  • 7.3. Экологический паспорт предприятия
  • 7.4. Экологическая экспертиза и контроль экологичности и безопасности предприятия
  • Глава 8 чрезвычайные ситуации
  • 8.1. Классификация чрезвычайных ситуаций
  • 8.2. Природные чрезвычайные ситуации
  • Инфекционные заболевания людей
  • 8.3. Чрезвычайные ситуации техногенного характера
  • 8.4. Чрезвычайные ситуации химического характера
  • 8.5. Чрезвычайные ситуации военного времени. Современные средства поражения
  • 8.6. Ядерное оружие: общая характеристика, поражающее действие
  • 8.7.Химическое оружие: общая характеристика, поражающее действие
  • Бактериологическое оружие: общая характеристика, поражающее действие
  • 8.9. Перспективные виды оружия массового поражения
  • Организация защиты населения и территории в чрезвычайных ситуациях. План мероприятий для предупреждения и ликвидации чрезвычайных ситуаций
  • Обеспечение устойчивости объектов при чрезвычайных ситуациях
  • Психологическая подготовка населения к чрезвычайным и экстремальным ситуациям
  • Организация оказания медицинской помощи при чрезвычайных ситуациях
  • Основные типы приборов для контроля требования безопасности жизнедеятельности
  • Законодательные и нормативно-правовые документы
  • 2.1. Общие вопросы охраны природы
  • 2.2. Трудовое законодательство
  • 2.3. Общепринятые государственные стандарты
  • 2.4. Санитарные и строительные нормы и правила
  • Рекомендуемая литература
  • 4.5. Защита от статического и атмосферного электричества

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

      в потоке и при разбрызгивании жидкости;

      в струе газа или пара;

      при соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

      предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

      уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

      снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

      отвод статического электричества, накапливающегося на людях;

      устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

      обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей.

    Виды ударов молнии:

      прямые удары молнии на объект;

      за счет распределения потенциалов (может поражаться соседний объект);

      за счет индуктивного эффекта (может поражаться третий объект, например, через почву).

    Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h– высота здания,n– коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в IIIклиматическом поясе. 40 - 60 раз может ударить молния летом,n= 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

      корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

      металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

      для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

      для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

      металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

      внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

      во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    23.04.2009 19:08 Александр

    Защита от статического и атмосферного электричества, молниезащита. Статическое электричество – совокупность явлений, связанных с возникновением, сохранением и релаксацией зарядов. Заряды возникают при трении, дроблении, облучении УФ, химических реакциях. Длительное время заряды сохраняются на поверхности полупроводников и диэлектриков с удельным сопротивлением ρ≥105 Ом*м. Релаксация зарядов происходит в следующих формах – растекание по поверхности и в объёме тела, стекание зарядов с поверхности тела в воздух. Опасность статического электричества заключается в возможности воспламенения горючих смесей, находящихся в помещении. Меры защиты: 1.снижение силового воздействия 2.снижение скоростей перемещения слоёв сыпучих материалов и жидкостей 3.изготовление контактирующих тел из материалов с близким удельным сопротивлением 4.нанесение на поверхность токоведущих тел лакокрасочных покрытий 5.обработка антистатиками 6.увеличение относительной влажности выше 65% 7.заземление оборудования 8.ионизация воздуха вблизи мест образования зарядов с помощью нейтрализаторов различного типа 9.токопроводящая обувь, полы, обивки стульев 10.легкосъёмные токопроводящие браслеты Поражающие факторы атмосферного электричества. 1.прямой удар молнией и защита с помощью молниеотводов 2.явление электромагнитной индукции, т.е. Вследствие возникновения, мощного переменного во времени электрического поля, способного индуцировать ЭДС различной величины в металлических конструкциях, при сближении которых могут происходить электрические разряды на заземлённые предметы, след-но, возникновение опасного электротравматизма, воспламенение горючих смесей и т.п. Для защиты в местах сближения металлических конструкций до 20 см между ними необходимо устраивать металлические перемычки 3.электростатическая индукция, т.е. Наведение заряда противоположного знака по сравнению с зарядом облака на металлических предметах, изолированных от земли. Релаксация зарядов с этих предметов происходит на ближайшие заземлённые предметы, след-но, электротравматизм, воспламенение. 4.занос высоких потенциалов по металло-комуникациям, входящих в здание. Защита: заземление крюков фазных проводов. Все здания по опасности поражения молнией подразделяются на 3 категории: --здания, в которых находятся горючие вещества, воспламенение которых может повлечь значительные разрушения и угрозу жизни людей. Т.е. Здания, в которых есть помещения В-I и В-II. ---- воспламенение которых не может повлечь значительного ущерба, т.е. Здания В-Iа, В-Iб, В-iiа. - Все остальные В зданиях 1 и 2 категории необходима защита от всех 4 поражающих факторов молниезащита типа А. В зданиях 3 категории необходимо устройство молниеотводов (А или Б) и защита от заноса высоких потенциалов. Молниеотводы бывают стержневые, сетчатые, сетчатые с ячейками 6х6, тросовые. Кроме того бывают одиночными и многократными. 1 – опора 2 – молниеприёмник 3 - токоотвод 4 – заземлитель

    При прикосновении человека к предмету, несу­щему электрический заряд, происходит разряд по­следнего через тело человека. Величины возникаю­щих при разрядке токов небольшие и они очень кратковременны. Поэтому электротравм не возни­кает. Однако разряд, как правило, вызывает рефлек­торное движение человека, что в ряде случаев может привести к резкому движению, падению человека с высоты.

    Кроме того, при образовании заряда с большим электрическим потенциалом вокруг них создается электрическое поле повышенной напряженности, кото­рое вредно для человека. При длительном пребывании человека в таком поле наблюдаются функциональные изменения в центральной нервной, сердечно-сосудистой и других системах.

    «У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью». 1

    Установлено также благотворное влияние на самочувствие снятия избыточного электростатического заряда с тела человека (заземление, хождение босиком).

    Наибольшая опасность электростатических заря­дов заключается в том, что искровой разряд может обладать энергией, достаточной для воспламенения горючей или взрывоопасной смеси. Искра, возникаю­щая при разрядке электростатических зарядов, яв­ляется частой причиной пожаров и взрывов.

    Так, удаление из помещения пыли из диэлек­трического материала с помощью вытяжной венти­ляции может привести к накоплению в газоходах электростатических зарядов и отложений пыли. Появление искрового разряда в этом случае может привести к воспламенению или взрыву пыли. Из­вестны случаи очень серьезных аварий на предпри­ятиях в результате взрывов в системах вентиляции.

    При перевозке легковоспламеняющихся жидко­стей, при их перекачке по трубопроводам, сливе из цистерны или за счет плескания жидкости накап­ливаются электростатические заряды, и может возникнуть искра, которая воспламенит жидкость.

    Наибольшую опасность статическое электричес­тво представляет на производстве и на транспорте, особенно при наличии пожаро-взрывоопасных смесей, пылей и паров легковоспламеняющихся жидкостей.

    В бытовых условиях (например, при хождении по ковру) накапливаются небольшие заряды, и энергии возникших искровых разрядов недоста­точно для инициирования пожара в обычных усло­виях быта.


    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

    В потоке и при разбрызгивании жидкости;

    В струе газа или пара;

    При соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

    Предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

    Уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

    Снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

    Отвод статического электричества, накапливающегося на людях;

    Устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

    Обеспечение работающих токопроводящей обувью, антистатическими халатами.

    При определенных условиях в дождевом облаке могут накапливаться электрические заряды. Этому способствуют аэродинамические и термические процессы (восходящие воздушные потоки, конденсация паров на высоте от 1 до 6 км, образование капель, их дробление). В результате этих процессов капли получают суммарный отрицательный заряд и наполняют нижнюю часть облака, а более инерционные положительные ионы воздуха – верхнюю часть. При этом, внутри облака образуется электрическое поле между распределенными разнополярными зарядами.

    Таким образом, молния – это электрический разряд в атмосфере между заряженным облаком и землей или между разноименно заряженными частями облака. Разряд имеет преимущественно вид линейной молнии. Направленный вниз заряд между облаком и землей делится на лидерный (начальный) и главный (обратный). Обычно он начинается с прорастания от облака к земле слабо светящегося канала-ступенчатого лидера. При касании головки лидера земли возникает главный разряд. Он связан с нейтрализаций отрицательных зарядов лидера положительными зарядами земли и напоминает короткое замыкание. Главный разряд сопровождается интенсивным свечением, уменьшающимся при приближении к облаку, а также звуком (громом). Этот разряд и воспринимается людьми как молния. Основной источник их поражения – линейная молния.

    Грозовой разряд оказывает на человека тепловое воздействие, а также механическое и электромагнитное.

    От прямых ударов молнии объекты защищают молниеотводами различных типов и конструкций. Молниеотвод любого типа состоит из молниеприемника, предназначенного для непосредственного приема удара молнии, токоотвода, обеспечивающего отвод тока молнии к заземлению, и заземлителя, отводящего ток молнии в землю. Для крепления молниеприемников и токоотводов предназначены несущие конструкции (опоры).

    Принцип действия молниеотводов основан на использовании свойства избирательности поражений молнией более высоких и хорошо заземленных предметов. Поэтому необходимо, чтобы молниеотвод возвышался над защищаемым объектом и имел достаточно хороший контакт с землей. Молниеотвод создает условия для ориентации лидерного разряда в направлении вершины молниеотвода (за счет создания наибольшей напряженности электрического поля на пути между развивающимся лидерным каналом и вершиной молниеотвода). Таким образом, молниеотвод как бы “отбирает” на себя грозовые разряды, возникающие в определенной зоне вокруг него, и, тем самым, экранирует расположенные поблизости от него более низкие объекты.

    Пространство вокруг молниеотвода, защищенное от прямых ударов молнии, называется зоной защиты молниеотвода. Защищаемый объект должен полностью входить в зону защиты.



    В зависимости от категории здания по устройству молниезащиты и ожидаемого числа поражений молнией в год требуется, чтобы объект полностью располагался в зоне защиты типа А или Б. Зона защиты типа А обладает степенью надежности (на ее границе) не ниже 99,5%, а зона защиты типа Б – не ниже 95%. Это очень высокая степень надежности. Прорыв молнии в зону защиты типа А возможен только в пяти случаях из тысячи ударов, а в зону защиты типа Б – в пяти случаях из ста.

    Обычно применяют стержневые, тросовые и сетчатые типы молниеотводов. Для молниезащиты одного или группы строений применяют молниеотводы одного типа, но в ряде случаев целесообразно использовать комбинированные типы молниеотводов (например, тросово-стержневой молниеотвод).

    Важным элементом молниеотвода является его заземляющее устройство, т.е. специальная металлическая конструкция, расположенная в земле. Оно служит для безопасного отвода тока молнии в землю.

    Конструктивно молниеотводы и их заземляющие устройства должны выполняться следующим образом.

    1. Опоры стержневых молниеотводов могут изготавливаться из стали любой марки, железобетона или дерева. Они должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузке.

    2. Стержневые молниеприемники должны быть изготовлены сечением не менее 100 мм² и длиной не менее 200 мм из стали любой марки. Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм². Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой. Эти соединения и токоотводы изготовливаются из круглой стали диаметром не менее 6 мм. Токоотводы, прокладываемые по наружным стенам здания, следует располагать не ближе 3 м от входов или в местах, недоступных для прикосновения людей.



    3. В качестве естественных заземлителей молниезащиты допускается использование любых конструкций железобетонных фундаментов зданий и сооружений при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям. Допускается также использование для молниезащиты всех заземлителей электроустановок, рекомендуемых ПУЭ

    4. Должны быть предусмотрены искусственные заземлители. Их следует располагать под асфальтовым покрытием либо в редко посещаемых местах (на газонах, в удалении от грунтовых проезжих и пешеходных дорог) на расстоянии 5 м и более.

    30. Статическое электричество: сущность, опасность, методы защиты

    При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей - диэлектриков, на изолированных от земли металлических частях производственного оборудования возникает электрическое напряжение относительно земли порядка десятков киловольт.

    Так, при движении резиновой ленты транспортера в сельс­кохозяйственных агрегатах с электроприводом через клиноременную передачу в устройствах ременной передачи на лен­те (ремне) и на роликах (шкивах) возникают электростати­ческие заряды противоположных знаков большой величины, а потенциалы их достигают 45 кВ. Основную роль при этом играют влажность, давление воздуха и состояние поверхнос­тей лент (ремней) и роликов (шкивов), а также скорость отно­сительного движения (пробуксовки). Аналогично происходит электризация при сматывании тканей, бумаги, пленки и др.

    При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.

    Возникающие в производственных условиях электроста­тические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем пос­ледующие разряды с тела человека на землю или заземлен­ное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого дви­жения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение). "

    Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением про­изводственного оборудования и емкостей для хранения лег­ковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел пу­тем повышения влажности воздуха или применением анти­статических примесей к основному продукту (жидкости, ре­зиновые изделия и др.); ионизацией воздуха с целью увели­чения его электропроводности.

    31. Индивидуальные средства защиты от поражения электрическим током.

    Электрозащитные средства должны находиться в поме­щениях электроустановок в качестве инвентарного имуще­ства. Они распределяются по местам хранения и это поло­жение должно быть зафиксировано в списках, утвержден­ных главным энергетиком предприятия. Ответственность за своевременное обеспечение персонала и комплектование электроустановок электрозащитными средствами несут на­чальник цеха, службы участка, а в целом по предприятию - главный инженер. Электротехнический персонал получает электрозащитные средства в индивидуальное пользование и отвечает за их правильную эксплуатацию и своевремен­ную отбраковку. Все электрозащитные средства должны быть пронумерованы, храниться в специальных помещениях, шка­фах, ящиках.

    При эксплуатации средства защиты должны подвергать­ся периодическим и внеочередным испытаниям (после ре­монта) согласно ПТЭ и ПТБ.

    Электрозащитные средства служат для защиты людей, работающих с электроустановками, от поражения электри­ческим током, от воздействия электрической дуги и электро­магнитного поля.

    Основные электрозащитные средства защиты, изоляция которых длительно выдерживает рабочее напряжение элект­роустановок, позволяют прикасаться к токоведущим частям, находящимся под напряжением.

    Дополнительные электрозащитные средства защиты сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

    К электрозащитным средствам относятся:

    изолирующие штанги (оперативные, для наложения за­земления, измерительные), изолирующие (для операций с предохранителями) и электроизмерительные клещи, указатели напряжения, указатели напряжения для фазировки и т. д.;

    изолирующие устройства и приспособления для ремонт­ных работ под напряжением выше 1000 В и слесарно-монтажный инструмент с изолирующими рукоятками для рабо­ты в электроустановках напряжением до 1000 В;

    диэлектрические перчатки, боты, галоши, ковры, изолиру­ющие накладки и подставки;

    индивидуальные экранизирующие комплекты;

    переносные заземления;

    оградительные устройства и диэлектрические колпаки;

    плакаты и знаки безопасности.

    Кроме перечисленных электрозащитных средств при работах в электроустановках следует, при необходимости, применять такие средства индивидуальной защиты, как очки, каски, противогазы, рукавицы, предохранительные монтерские по­яса и страховочные канаты.

    Классификация защитных средств в зависимости от напряжения электроустановки приведена в таблице.