Происхождение метеоритов. Источники метеоритов

Метеориты состоят из тех же химических элементов, которые имеются и на Земле.

В основном это 8 элементов: железо, никель, магний, сера, алюминий, кремний, кальций, кислород . Встречаются в метеоритах и другие элементы, но в очень малых количествах. Составляющие элементы взаимодействуют между собой, образуя в метеоритах различные минералы. Большинство из них также присутствует на Земле. Но бывают метеориты с неизвестными на земле минералами.
Метеориты по составу классифицируют следующим образом:
каменные (большинство из них хондриты , т.к. содержат хондры - сферические или эллиптические образования преимущественно силикатного состава);
железо-каменные ;
железные .


Железные метеориты почти полностью состоят из железа в соединении с никелем и незначительным количеством кобальта.
Каменистые метеориты содержат силикаты – минералы, представляющие собой соединение кремния с кислородом и примесью алюминия, кальция и других элементов. В каменных метеоритах встречается никелистое железо в виде зернышек в массе метеорита. Железо-каменные метеориты состоят в основном из равных количеств каменистого вещества и никелистого железа.
В разных местах Земли обнаружены тектиты – стеклянные куски небольшого размера в несколько граммов. Но уже доказано, что тектиты – это застывшее земное вещество, выброшенное при образовании метеоритных кратеров.
Учеными доказано, что метеориты являются обломками астероидов (малых планет). Они сталкиваются между собой и дробятся на более мелкие осколки. Эти осколки и падают на Землю в виде метеоритов.

Для чего изучают состав метеоритов?

Это изучение дает представление о составе, структуре и физических свойствах других небесных тел: астероидов, спутников планет и т.д.
В метеоритах обнаружены и следы внеземной органики. Углеродосодержащие (углистые) метеориты имеют одну важную особенность - наличие тонкой стекловидной коры, образовавшейся, по-видимому, под воздействием высоких температур. Эта кора является хорошим теплоизолятором, благодаря чему внутри углистых метеоритов сохраняются минералы, не выносящие сильного нагрева - например, гипс. Что это значит? Это значит, что при исследовании химической природы подобных метеоритов в их составе обнаружены вещества, которые в современных земных условиях являются органическими соединениями, имеющими биогенную природу. Хотелось бы надеяться, что этот факт говорит о существовании жизни вне Земли. Но, к сожалению, однозначно и с уверенностью говорить об этом невозможно, т.к. теоретически эти вещества могли быть синтезированы и абиогенно. Хотя можно допустить, что если обнаруженные в метеоритах вещества и не являются продуктами жизни, то они могут быть продуктами преджизни - подобной той, какая существовала некогда на Земле.
При исследовании каменных метеоритов обнаруживаются даже так называемые «организованные элементы» - микроскопические (5-50 мкм) «одноклеточные» образования, часто имеющие явно выраженные двойные стенки, поры, шипы и т.
Падение метеоритов предсказать невозможно. Поэтому неизвестно, где и когда метеорит упадет. По этой причине лишь малая часть упавших на Землю метеоритов попадает в руки исследователей. Лишь 1/3 часть упавших метеоритов наблюдалась при падении. Остальные – случайные находки. Из них больше всех железные, так как они дольше сохраняются. Расскажем об одном из них.

Сихотэ-Алинский метеорит

Он упал в Уссурийской тайге в горах Сихотэ-Алинь на Дальнем Востоке 12 февраля 1947 года в 10 часов 38 минут, раздробился в атмосфере и выпал железным дождем на площади 35 квадратных километров. Части дождя рассеялись по тайге на площади в виде эллипса с осью длиной около 10 километров. В головной части эллипса (кратерном поле) было обнаружено 106 воронок, диаметром от 1 до 28 метров, глубина самой большой воронки достигала 6 метров.
По химическим анализам, Сихотэ-Алинский метеорит относится к железным: состоит из 94 % железа, 5,5 % никеля, 0,38 % кобальта и небольших количеств углерода, хлора, фосфора и серы.
Первыми место падения метеорита обнаружили лётчики Дальневосточного геологического управления, которые возвращались с задания.
В апреле 1947 года для изучения падения и сбора всех частей метеорита Комитетом по метеоритам Академии Наук СССР была организована экспедиция под руководством академика В. Г. Фесенкова.
Сейчас этот метеорит находится в метеоритной коллекции Российской академии наук.

Как узнать метеорит?

Практически большинство метеоритов находят случайно. Как же можно определить, что то, что вы нашли, - является метеоритом? Вот простейшие признаки метеоритов.
У них большая плотность. Они тяжелее, чем гранит или осадочные породы.
На поверхности метеоритов часто видны сглаженные углубления, как будто вмятины пальцев на глине.
Иногда метеорит похож на затупленную головку снаряда.
На свежих метеоритах видна тонкая кора плавления (около 1 мм).
Излом метеорита чаще всего бывает серого цвета, на котором иногда заметны маленькие шарики – хондры.
У большинства метеоритов видны на разрезе вкрапления железа.
Метеориты намагничены, стрелка компаса заметно отклоняется.
С течением времени метеориты окисляются на воздухе, приобретая ржавый цвет

Инструкция

Все метеориты подразделяются на железные, железокаменные и каменные, в зависимости от своего химического состава. Первые и вторые имеют значительный процент содержания никелистого . Находят их нечасто, поскольку имея поверхность серого или коричневого , они на глаз неотличимы от обычных камней. Искать их лучше всего с помощью миноискателя. Однако, взяв такой в руки, вы сразу поймете, что держите металл или что-то на него похожее.

Железные метеориты имеют высокий удельный вес и магнитные свойства. Упавшие давно, приобретают ржавый оттенок – это их отличительная особенность. Большая часть железокаменных и каменных метеоритов также намагничивается. Последние, однако, в значительно меньше. Недавно упавший обнаружить достаточно просто, поскольку вокруг места его падения обычно образуется кратер.

При движении сквозь атмосферу метеорит сильно разогревается. У недавно упавших заметна оплавившаяся оболочка. После остывания на их поверхности остаются регмаглипты – углубления и выступы, словно от пальцев на , и шерсткости - следы, напоминающие лопнувшие пузыри. По форме метеориты часто похожи на несколько скругленную головку .

Источники:

  • Комитет по метеоритам РАН

– небесные камни или куски металла, прилетевшие из космоса. На вид они довольно невзрачны: серые, бурые или черные. Но метеориты - единственное внеземное вещество, которое можно изучить или хотя бы подержать в руках. Астрономы с их помощью узнают историю космических объектов.

Вам понадобится

  • Магнит.

Инструкция

Самый простой, но и самый лучший индикатор, который может достать обыватель, - это магнит. Во всех небесных камнях присутствует железо, которое и . Хороший вариант – такой предмет в виде подковы с четырехфунтовым напряжением.

После такого первичного тестирования возможный следует отправить в лабораторию для подтверждения или опровержения подлинности находки. Иногда такие тесты длятся около месяца. Космические камни и земные их братья состоят из тех же полезных ископаемых. Отличаются они лишь концентрацией, комбинацией и механикой формирования этих веществ.

Если вы думаете, что у вас в руках не железистый метеорит, а , испытание магнитом будет бессмысленным. Осмотрите его внимательно. Тщательно потрите находку, сосредоточьтесь на небольшом участке размером с монетку. Таким образом вы облегчите себе исследование матрицы камня.

Имеют маленькие сферические включения, которые напоминают пятнышки-веснушки солнечного железа. Это отличительная особенность камней-«путешественников». Этот эффект нельзя произвести искусственным образом.

Видео по теме

Источники:

  • Форма и поверхность метеоритов. в 2019

Метеорит можно отличить от обычного камня прямо на месте находки. По закону метеорит приравнивается к кладу и нашедший его получает вознаграждение. Вместо метеорита могут оказаться другие природные диковины: жеод или железный самородок, еще более ценные.

В этой статье рассказывается, как прямо на месте находки определить – простой перед вами булыжник, метеорит или другая природная редкость из упомянутых далее в тексте. Из приборов и инструмента понадобятся бумага, карандаш, сильная (не менее 8х) лупа и компас; желательно – хорошая фотокамера и GSM-навигатор. Еще – малая садовая или саперная . Химических реактивов и молотка с долотом не требуется, но нужен пластиковый мешок и мягкий упаковочный материал.

В чем сущность способа

Метеориты и их «имитаторы» имеют огромную научную ценность и законодательством РФ приравниваются к кладам. Нашедший, после оценки экспертами, получает вознаграждение.

Однако, если находка до доставки в научное учреждение подвергалась химическим, механическим, термическим и другим несанкционированным воздействиям, ее ценность резко, в разы и десятки раз, снижается. Для ученых большее значение могут иметь редчайшие натечные минералы на поверхности образца и его сохранившееся в первозданном виде нутро.

Кладоискатели-«хищники», самостоятельно чистящие до «товарного» вида находку и разбивающие ее на сувениры, не только вредят науке, но и себя намного обделяют. Поэтому далее рассказывается, свыше 95% уверенности в ценности обнаруженного, еще и не прикасаясь к нему.

Внешние признаки

Метеориты влетают в земную атмосферу на скорости 11-72 км/с. При этом они оплавляются. Первейший признак внеземного происхождения находки – кора плавления, по цвету и фактуре отличающаяся от внутренности. Но у железных, железокаменных и каменных метеоритов разных видов кора плавления разная.

Мелкие железные метеориты целиком приобретают форму обтекаемую или оживальную, несколько напоминающую пулю или артиллерийский снаряд (поз. 1 на рисунке). В любом случае поверхность подозрительного «камня» сглажена, как вылепленная из , поз. 2. Если образец к тому же имеет причудливую форму (поз.3), то он может оказаться и метеоритом, и куском самородного железа, который еще ценнее.

Свежая кора плавления иссиня-черная (Поз. 1,2,3,7,9). У долго пролежавшего в земле железного метеорита она со временем окисляется и меняет цвет (Поз. 4 и 5), а у железокаменного может стать похожей на обычную ржавчину (Поз. 6). Это нередко вводит в заблуждение искателей, тем более, что и рельеф плавления железокаменного метеорита, влетевшего в атмосферу на скорости, близкой к минимальной, может быть выражен слабо (Поз. 6).

В таком случае выручит компас. Поднесите его к , если стрелка покажет на «камень», то это скорее всего содержащий железо метеорит. Железные самородки тоже «магнитят», но они чрезвычайно редки и совершенно не ржавеют.

У каменных и железокаменных метеоритов кора плавления неоднородна, но у ее фрагментов уже невооруженным глазом видна некоторая вытянутость в одном направлении (Поз. 7). Каменные метеориты часто раскалываются еще в полете. Если разрушение произошло на заключительном участке траектории, на землю могут упасть их обломки, не имеющие коры плавления. Однако в таком случае обнажается их внутренняя структура, не похожая ни на какие земные минералы (Поз. 8).

Если образец имеет скол, то определить, метеорит это или нет, в средних широтах можно с первого взгляда: кора плавления резко отличается от внутренности (Поз. 9). Точно покажет происхождение коры под лупой: если на коре виден струйчатый рисунок (Поз. 10), а на сколе – так называемые организованные элементы (Поз. 11), то это наверняка метеорит.

В пустыне может ввести в заблуждение так называемый загар камня. Также в пустынях сильна ветровая и температурная эрозия, из-за чего и ребра обычного камня могут оказаться сглаженными. У метеорита же влияние пустынного климата может сгладить струйчатый рисунок, а пустынный загар затянуть скол.

В тропическом поясе внешние воздействия на горные породы столь сильны, что метеориты на поверхности грунта скоро становятся трудно отличимыми от простых камней. В таких случаях помочь приобрести уверенность в находке может приблизительное их удельного веса после изъятия из залегания.

Документирование и изъятие

Чтобы находка сохранила ценность, ее местонахождение до изъятия необходимо задокументировать. Для этого:

· По GSM, если есть навигатор, и записываем географические координаты.
· Фотографируем с разных сторон издалека и вблизи (в разных ракурсах, как говорят фотографы), стараясь захватить в кадр все примечательное возле образца. Для масштаба рядом с находкой кладем линейку или предмет известного размера (крышку объектива, спичечный коробок, консервную банку и т.п.)
· Рисуем кроки (план-схему места находки без масштаба), с указанием азимутов по компасу на ближайшие ориентиры (населенные пункты, геодезические знаки, приметные возвышенности и т.п.), с глазомерной оценкой расстояния до них.

Теперь можно приступать к изъятию. Сначала прокапываем сбоку к «камню» траншейку и смотрим, как по ее длине меняется вид грунта. Находку нужно изымать вместе с натеком вокруг нее, и в любом случае – в слое грунта не менее 20 мм. Нередко химические изменения вокруг метеорита ученые ценят больше, чем его самого.

Осторожно выкопав, кладем образец в мешок и прикидываем рукой его вес. Из метеоритов в космосе «выметаются» легкие элементы и летучие соединения, поэтому их удельный вес больше, чем у земных горных пород. Для сравнения можно выкопать и взвесить на руках похожий по размеру булыжник. Метеорит даже в слое грунта окажется намного тяжелее.

А вдруг – жеод?

На долго пролежавшие в земле метеориты внешне часто похожи жеоды – кристаллизационные «гнезда» в земных горных породах. Жеод пустотелый, поэтому будет легче даже обычного камня. Но не разочаровывайтесь: вам повезло ничуть не меньше. Внутри жеода – гнездилище натурального пьезокварца, а нередко и драгоценных камней (Поз. 12). Поэтому жеоды (и железные самородки) также приравниваются к кладам.

Но разбивать объект, на жеод, ни в коем случае не следует. Помимо того, что он при этом намного обесценится, нелегальная продажа самоцветов влечет за собой уголовную ответственность. Жеод нужно доставить в то же учреждение, что и метеорит. Если его содержимое имеет ювелирную ценность, нашедший, по закону, имеет право на соответствующее вознаграждение.

Куда нести?

Доставить находку необходимо в ближайшее научное учреждение, хотя бы в музей. Можно и в полицию, уставом МВД такой случай предусмотрен. Если находка слишком тяжелая, или ученые с полицейскими не очень далеко, лучше вообще не изымать, а вызвать тех или других. Права нашедшего не вознаграждение это не умаляет, а ценность находки увеличивается.

Если же все-таки приходится транспортировать самому, образец необходимо снабдить этикеткой. В ней нужно указать точное время и место обнаружения, все существенные, на ваш взгляд, обстоятельства находки, свои ФИО, время и место рождения и адрес постоянного проживания. К этикетке прикладываются кроки и, по возможности, фотографии. Если камера цифровая, то файлы с нее скачиваются на носитель безо всякой обработки, лучше вообще помимо компьютера, прямо с камеры на флешку.

Для транспортировки образец в мешке оборачивают ватой, синтепоном или другой мягкой прокладкой. Желательно также поместить его в прочный деревянный ящик, зафиксировав от смещения при перевозке. Самостоятельно в любом случае нужно доставлять только до места, куда смогут прибыть квалифицированные специалисты.


МЕТЕОРИТ

Характеристика минерала.

Каменные и железные тела, упавшие на Землю из межпланетного пространства, называются метеоритами, а наука, их изучающая - метеоритикой. В околоземном космическом пространстве движутся самые различные метеороиты (космические осколки больших астероидов и комет). Их скорости лежат в диапазоне от 11 до 72 км/с. Часто бывает так, что пути их движения пересекаются с орбитой Земли и они залетают в ее атмосферу. В отдельных случаях крупное метеорное тело при своем движении в атмосфере не успевает испариться и достигает поверхности Земли. При ударе о землю метеорит может рассыпаться в пыль, а может и оставить осколки. Этот остаток метеорного (небесного) тела называется метеоритом. На протяжении года на территорию России, например, выпадает около 2000 метеоритов.

Все метеориты считаются научным достоянием и исключительной собственностью государства, на территорию которого они упали (вне зависимости от того, кто именно нашел метеорит) - таковы международные нормы. Никто из граждан не имеет права владеть метеоритами, покупать или продавать их.



Рутил по гематиту. Сен-Готард, Швейцария (возможная


Метеорит "Сеймчан" (спил). Фото: А.А. Евсеев.


Рутил на гематите. Mwinilunga, Zambia (возможная
псевдоморфоза по метеориту). 3х3 см. Фото: А.А. Евсеев.


Рутил на гематите по ильмениту. Mwinilunga, Zambia
(возможная псевдоморфоза по метеориту). Фото: А.А. Евсеев.

В зависимости от химического состава метеориты подразделяются на каменные, железные и железокаменные метеориты. Железные и железокаменные метеориты практически полностью состоят из никелистого железа. Их выпадает около 20% от общего количества. Недавно упавший каменный метеорит найти очень легко, так как вокруг места падения образуется заметный кратер, а железные невозможно отличить от обычных камней, так как зачастую их поверхность полностью оплавляется и приобретает сероватый или коричневатый цвет. Поэтому железные и железокаменные метеориты находят очень редко (из-за отсутствия у населения металлоискателей). Всем известны так называемые "горячие камни с неба", то они в 25% случаев оказываются железокаменными метеоритами, на них, например, металлоискатель реагирует как бы с небольшим запозданием, после прохождения над ними. Железные метеориты отличаются очень четким откликом от металлоискателя.

Самым лучшим местом для поиска метеоритов является гладкая степь - 45% от всех находок делается именно здесь. Если вы живете в другой климатической зоне, то можно отправиться на поиски в поле (37% от всех находок). Лесные поляны и берега рек не очень подходят для этих целей. Хорошим местом для поиска являются русла горных рек, выстланные округлыми камнями.

Метеориты находят значительно реже, чем тектиты. Проверить, нашли ли Вы железный метеорит, это можно простым способом: железные метеориты на сколе обычно блестят как железо или как никель. Если вы нашли железокаменный метеорит, то на изломе видны рассеянные мелкие блестящие частички серебристо-белого цвета. Это - включения никелистого железа. Среди таких частичек встречаются золотистые блестки - включения минерала, состоящего из железа в соединении с серой (пирит). Бывают метеориты, которые представляют собой как бы железную губку, в пустотах которой заключены зерна желтовато-зеленого цвета минерала оливина (гранат, образующийся в месте падения и удара об землю метеорита, частый спутник алмазов в алмазных трубках). На фото вверху - кратер от падения метеорита в Узбекистане. На фото внизу приведены различные железные и каменные метеориты, хранящиеся как экспонаты в минералогических музеях или даже под открытым небом.

Если небесное тело не долетает до земли и полностью сгорает в атмосфере, оно называется болидом или метеором. Метеор прочерчивает яркий след, болид как бы горит огнем в полете. Никаких следов на поверхности земли, соответственно, они не оставляют, в атмосфере Земли ежегодно сгорает огромное число небесных тел. Искать их следы на земле в месте предполагаемого падения совершенно бесполезно, даже если болид или метеор прочертили в небе очень яркий и заметный ночью след. Днем сгорающие в атмосфере болиды и метеоры не видны на солнечном свету. Космические тела, состоящие преимущественно из сухого льда, также испаряются в атмосфере, хотя они летят, оставляя очень заметный и яркий след в темноте.

История исследования метеоритов насчитывает чуть больше двух столетий, хотя человечество познакомилось с этими небесными посланниками существенно раньше. Первое железо, использованное человеком, несомненно, было метеоритным. Это нашло свое отражение в названии железа у многих народов. Так, древние египтяне именовали его "бинипет", что означает небесная руда. В древней Месопотамии его называли "анбар" - небесный металл; древнегреческое "сидерос" происходит от латинского слова "sidereus" - звездный. Древнеармянское название железа "еркам" - капнувший (упавший) с неба.
Первое задокументированное сведение о камнях, падающих с неба, встречено в китайских летописях и датируется 654 годом до н.э. Наиболее древний метеорит, наблюдавшийся при падении и сохранившийся до наших дней, - это каменный метеорит Nogato, падение которого, как задокументировано в старых японских летописях, наблюдалось 19 мая 861 г. н.э.
Шли века, метеориты падали на Землю, летописные данные меняли свою религиозную форму на все более правдоподобное описание падений. Тем не менее к концу XVIII века большинство европейских ученых все же крайне скептически относились к сообщениям простого люда о камнях, падающих с неба. В 1772 году известный химик А.Л. Лавуазье стал одним из авторов доклада ученых в Парижскую академию наук, в котором говорилось, что "падения камней с неба физически невозможны". После такого заключения, подписанного авторитетными учеными, Парижская академия наук отказалась рассматривать какие-либо сообщения "о камнях, падающих с неба". Столь безапелляционное отрицание возможности падения на Землю тел из космического пространства привело к тому, что, когда утром 24 июня 1790 года на юге Франции упал метеорит Barbotan и падение его было засвидетельствовано бургомистром и городской ратушей, французский ученый П. Бертолле (1741-1799) писал: "Как печально, что целый муниципалитет заносит в протокол народные сказки, выдавая их за действительно виденное, тогда как не только физикой, но и ничем разумным вообще их нельзя объяснить". Увы, подобные высказывания не были единичными. И это в той самой Франции, где 7 марта 1618 года упавший на здание Парижского суда небольшой аэролит сжег его. В 1647 году болид раздавил двух яличников на Сене. В 1654 году метеорит убил монаха в окрестностях Парижа.

Однако следует отметить, что не все ученые единогласно разделяли официальную точку зрения Парижской академии и в историю метеоритики навсегда вошли имена Эрнста Хладного и Эдварда Кинга, опубликовавших в конце XVIII века первые книги по метеоритике на немецком и английском языках.
Первый "светлый луч в темном царстве" блеснул 26 апреля 1803 года: около городка Легль на севере Франции выпал каменный метеоритный дождь, после которого было собрано несколько тысяч камней. Падение метеорита было документально засвидетельствовано многими официальными лицами. Теперь уже даже Парижская академия наук не могла отрицать сам факт падения метеоритов с неба. После доклада академика Био об обстоятельствах падения Легльского метеоритного дождя близ городка Легль Парижская академия наук вынуждена была признать: метеориты существуют, метеориты - тела внеземного происхождения, метеориты действительно попадают на Землю из межпланетного пространства.

Такое официальное признание метеоритов явилось импульсом для их детального изучения, и благодаря усилиям многих исследователей метеоритика постепенно становится наукой, изучающей минеральный и химический состав космического вещества. Основными достижениями метеоритики XIX века можно признать следующие:

1) установление самого факта существования метеоритов,
2) отождествление разных типов метеоритов с отдельными оболочками планет
3) гипотезу об астероидальном происхождении метеоритов.

На рубеже XIX-XX веков исследователи окончательно утвердились во мнении, что одним из ключевых моментов в построении непротиворечивого сценария образования Солнечной системы могут стать те самые "камни, падающие с неба", которые столетием раньше были преданы анафеме и безжалостно выбрасывались на помойки подобно тому, как во времена инквизиции (да и не только инквизиции) сжигались книги.
Итак, в начале ХХ века метеоритика праздновала свою победу. Она была чуть ли не единственной наукой, объект исследования которой мог помочь разобраться в сложных процессах образования и последующей эволюции минерального вещества в Солнечной системе. Детальное изучение минералогического и химического составов различных метеоритов, выполненное во второй половине XX века, позволило серьезно пересмотреть и усовершенствовать первые классификационные схемы метеоритов и представления наших предшественников о генезисе самих метеоритов. Повышение интереса ученых к исследованию метеоритов и детальность подхода проводимых ими исследований наглядно демонстрирует диаграмма увеличения числа минералов, установленных во внеземном веществе на протяжении последних 100 лет.
В результате многочисленных исследований выяснилось, что далеко не все метеориты - производные процесса дифференциации вещества на планетарных телах. Многие представляют собой брекчии (брекчия - порода, сложенная из обломков (размерами от 1 см и более) и сцементированная), отдельные обломки которых не могли образоваться в пределах единого родительского тела. Например, хорошо известный метеорит Kaidun содержит в своем составе обломки разных типов метеоритов, образование которых протекало при существенно различающихся окислительно-восстановительных условиях.

В метеорите Adzi-Bogdo установлено одновременное присутствие ультраосновных и кислых (по составу) ксенолитов. Находка последних говорит о крайне высокой степени дифференциации вещества на родительских телах, а значит, и об их относительно больших размерах.
Наиболее убедительные доказательства гетерогенности брекчированных метеоритов получены на основании изотопных данных, в частности об изотопном составе кислорода.
Известны три стабильных изотопа кислорода: 16 O, 18 O и 17 O. В результате протекания каких-либо физических, физико-химических или химических процессов практически всегда в продуктах реакций можно зафиксировать фракционирование изотопов кислорода. Например, при кристаллизации какого-либо минерала из силикатного расплава изотопный состав кислорода в этом минерале будет отличаться от исходного и оставшегося расплава, причем комплементарность не должна быть нарушена.
Поскольку различия в поведении изотопов в разнообразных физико-химических процессах связаны не с проявлением их химических свойств (которые практически одинаковы), а именно с массой изотопов, то характер фракционирования или разделения изотопов определяется как раз этим свойством. Поэтому на изотопно-кислородной диаграмме составы практически всех земных горных пород и минералов располагаются вдоль единой линии с тангенсом угла наклона примерно 0,5, получившей название "линии земного масс-фракционирования". Самое главное следствие из подобного анализа состоит в том, что любой химический процесс не может сдвинуть точку продуктов реакции с линии масс-фракционирования вверх или вниз. Какие бы химические реакции ни осуществлялись, какие бы минеральные фазы ни образовывались, всегда их составы будут находиться на линии масс-фракционирования. Это было неоднократно показано на примере земных минералов, руд и горных пород.
Рассмотрим наиболее распространенне каменные метеориты. Различные представители этого типа метеоритов занимают на диаграмме области, не связанные между собой законом масс-фракционирования. Несмотря на петрологическую или геохимическую стройность гипотез, например об образовании различных представителей этого типа каменных метеоритов - обогащенных металлом (Н), обедненных металлом (L) и очень обедненных металлом (LL) - в пределах одного (единого) родительского тела, изотопные данные свидетельствуют против подобного заключения: никакими процессами магматической дифференциации мы не в силах объяснить наблюдаемые различия изотопного состава кислорода. Поэтому необходимо допустить существование нескольких родительских тел даже для наиболее распространенного типа каменных метеоритов.
Изучая разные составляющие хондритовых метеоритов, ученые пришли к заключению и о временной последовательности их образования. Подобные выводы также базируются в основном на данных изотопных исследований. Исторически первой изотопной системой, предложенной для этих целей, была система I-Xe. Изотоп 129 I (период полураспада которого составляет 17 млн лет) распадается с образованием 129 Хе. Значит, при определенных допущениях, фиксируя избыток 129 Хе по отношению к другим стабильным изотопам этого элемента, можно определить интервал времени между последним событием нуклеосинтеза, приведшим к образованию 129 I (обычно это связывают со взрывом сверхновой звезды в окрестностях протосолнечной туманности), и началом конденсации первого твердого вещества в нашей Солнечной системе.
Рассмотрим эту временную датировку на примере другой изотопной системы - Al-Mg. Изотоп 26 Al (период полураспада 0,72 млн лет) распадается с образованием стабильного изотопа 26 Mg. Если образование минерального вещества в Солнечной системе отстояло от момента завершения звездного нуклеосинтеза элементов (в частности, изотопа 26 Al) на время, незначительно превышающее период его полураспада, то образовавшиеся и лишенные Mg высокоглиноземистые фазы, в состав которых естественно должен был войти 26 Al (например, анортит CaAl 2 Si 2 O 8), сейчас должны характеризоваться избытком 26 Mg по отношению к другому изотопу магния - 24 Mg (если эти минералы не подверглись изменениям после их образования). Более того, для одновременно образовавшихся минеральных фаз должна наблюдаться положительная корреляция между содержаниями избыточного 26 Mg и Al. Подобная корреляция существует. Таким образом, интервал времени между событием нуклеосинтеза, приведшим к образованию 26 Al, и образованием минерального вещества в нашей Солнечной системе составил не более чем несколько миллионов лет. Анализируя данные по нахождению других короткоживущих нуклидов в веществе ранней Солнечной системы, можно заключить, что начальные этапы эволюции протопланетного облака сопровождались периодическими вспышками сверхновых звезд в его окрестностях и привносом синтезированного этими звездами вещества.
Какие минералы были первыми конденсатами, первым твердым веществом, образовавшимся в нашей Солнечной системе? Этот вопрос остается до конца нерешенным. Однако данные по изучению химического состава весьма специфических образований (фремдлингов) - определенного типа металлических выделений в некоторых тугоплавких включениях показывают, что наиболее вероятными кандидатами в первое твердое минеральное вещество, образованное (а не привнесенное) в нашей Солнечной системе, могут быть сплавы на основе элементов платиновой группы, железа и никеля. Результаты термодинамических расчетов состава и последовательности конденсации металлических фаз из высокотемпературного газового облака практически полностью соответствуют наблюдениям.

Источник метеоритов

В настоящий момент практически ни у кого не вызывает сомнений, что метеориты выпадали на земную поверхность в течение всего геологического времени. Так, например, в плиоценовых (1,6-5,3 млн лет назад) отложениях Канады был найден первый, а впоследствии и второй экземпляры железного метеорита Klondike. Сильно выветрелый железный метеорит Sardis упал в среднемиоценовое (11,2-16,6 млн лет) море и был захоронен в отложениях хауторнской свиты. Один из железных метеоритов был обнаружен в эоценовых (36,6-57,8 млн лет) породах при проведении буровых работ на нефть в штате Техас (США). В последнее время стали известны находки ископаемых метеоритов в пограничных мел-палеогеновых (66,4 млн лет) отложениях Северной Атлантики и ордовикских (438-505 млн лет) отложениях Брунфло (Швеция). Если учесть редкость метеоритов вообще и их плохую сохранность в древних породах, то находки ископаемых метеоритов представляются и не такими уж редкими. Klondike Sardis
Размеры метеоритов колеблются от мельчайших пылевых частиц до нескольких метров в поперечнике. Из всех до сих пор найденных одиночных метеоритов самым крупным является железный метеорит Гоба в Юго-Западной Африке. Его масса составляет около 60 т. Первоначально масса была, вероятно, значительно больше, поскольку метеорит окружен слоем лимонита толщиной до 0,5 м, образовавшегося в результате длительного земного выветривания.
Так что же являтся источником метеоритов? Поступают ли метеориты на Землю с планет и их спутников? Да, но это далеко не самый главный источник. Лишь 0,1% от всех метеоритов были отождествлены с лунными горными породами, то есть образовавшимися на спутнике. Следует добавить, что источниками метеоритов являются и планеты земной группы. Прошло уже более 15 лет, как были идентифицированы метеориты с Марса.
По современным представлениям, бОльшая часть метеоритов приходит на Землю из пояса астероидов. И хотя это заключение базируется всего лишь на точных вычислениях орбит пяти метеоритов, движение которых в атмосфере нашей планеты были сфотографированы или даже записаны как видеофильмы, есть еще много и других косвенных свидетельств того, что пояс астероидов - источник метеоритов. Однако вещество, которое слагает наиболее распространенный тип каменных метеоритов, до последнего времени так и не удавалось идентифицировать в составе поверхностного слоя астероидов (а их было изучено несколько сот). Первое сообщение об обнаружении астероида, состав которого отвечает наиболее распространенному типу каменных метеоритов, датируется 1993 годом. Различия в составах наиболее распространенного типа астероидов и наиболее распространенного типа каменных метеоритов, падения которых были зарегистрированы (то есть подтверждены документально), - серьезный аргумент против идеи астероидного происхождения всех метеоритов. Тем не менее определенные типы метеоритного вещества явно представляют собой обломки некогда существовавших астероидов, и, наверное, трудно найти исследователей, которые смогли бы аргументированно опровергнуть этот тезис.
А как же кометы? Специфический состав комет (более чем тысячекратное обогащение их летучими соединениями по сравнению с обычным космическим веществом, выпадающим на Землю) не позволяет отождествить кометы и метеориты. Это принципиально различные типы вещества в Космосе.
Считается, что большинство метеоритов представляют собой относительно малоизмененное «изначальное» вещество первичной газо-пылевой протосолнечной туманности. Хондриты - своеобразная помойка из разнообразных фракций, от возникших при высокотемпературной конденсации из горячего газа кальций-алюминиевых включений и тугоплавких хондр до обогащенной летучими компонентами матрицы. Ахондриты и железные метеориты - это уже следующая ступенька преобразования. Они, вероятно, формировались в планетоподобных телах, достаточно крупных для того, чтобы их вещество под влиянием радиоактивного распада короткоживущих изотопов частично расплавилось и фракционировало (металл в ядро, каменная часть ближе к поверхности). Возраст всех этих метеоритов примерно один и тот же - 4,5 млрд. лет. С большими планетами ситуация иная, преобладающая часть их пород намного моложе. Хотя планеты исходно сложены из того же самого «изначального» вещества, оно успело за это время многократно переплавиться, перемешаться. На планетах земной группы геологическая жизнь или еще идет, или прекратилась относительно недавно. А родительские тела хондритов и большинства ахондритов давно мертвы (или уже не существуют), поэтому их вещество так ценно для науки - это своеобразный слепок прошлых эпох.
Не так давно выяснилось, что не все ахондриты одинаково старые, некоторые из них намного моложе остальных. А когда космические аппараты слетали к Луне и Марсу, оказалось, что эти «молодые» представляют собой обломки лунных и марсианских пород.
А как куски Марса попали на Землю? Путь здесь один - выброс вещества в космос при столкновении планеты с достаточно крупным астероидом. При сильном взрыве вполне может достигаться необходимая для космического путешествия скорость, особенно если атмосфера у планеты не очень мощная. Проведенные статистические расчеты показывают, что в современной метеоритной коллекции вполне могут быть 1-2 образца с Меркурия. Более того: по характеру поверхности планеты и спектральным характеристикам подозрение пало на энстатитовые хондриты. Но слишком уж этот тип метеоритов распространен - маловероятно, чтобы столько нападало с далекого Меркурия. Аналогичная история и с Венерой (хотя, чтобы пробить ее атмосферу, понадобится очень качественный астероид), и со спутниками больших планет (есть, скажем, подозрения, что метеорит Кайдун представляет собой вещество Фобоса, спутника Марса). Более того, вполне вероятно, что немало земных пород покоится на Луне; было бы интересно обнаружить на нашей соседке метеорит, прилетевший с Земли пару-тройку миллиардов лет назад.
И на закуску самое интригующее. Последнее десятилетие развития метеоритики проходит под флагом поиска и изучения внесолнечных и межзвездных минеральных зерен. В метеоритах есть зерна алмаза, корунда, нитрида кремния, которые старше самой Солнечной системы. Образовались они путем конденсации из горячего газа во внешних оболочках различного типа звезд. Определяются такие путешественники по изотопному составу, а характер распределения элементов позволяет предположить, в какой именно из звезд каждый микроалмазик мог образоваться. Эти минеральные зерна обладают столь аномальным изотопным составом, что объяснить их происхождение в рамках Солнечной системы невозможно. Внесолнечные зерна очень малы (максимальный размер 1,5-2 микрона), а получают их либо растворением метеоритов в плавиковой кислоте (эти тугоплавкие фазы неподвластны даже ей), либо очень сложной методикой картирования срезов с помощью ионного микрозонда (совсем недавно разработанной японскими исследователями). Эти минералы образовались во внешних оболочках далеких звезд и в межзвездной среде и унаследовали их изотопный состав. С момента образования из-за своей химической инертности и тугоплавкости они не испытали действия каких-либо дальнейших процессов изменения и преобразования вещества. Ученые впервые получили возможность изучать в лабораториях вещество, синтезированное в определенных типах звезд, и здесь дороги ядерной физики, астрофизики и метеоритики пересеклись. Метеориты оказались чуть ли не единственным материальным объектом, способным помочь разобраться в сложных вопросах глобальной эволюции вещества в космосе.

Итак подведем итоги:
- большинство метеоритов представляют собой «изначальное» вещество первичной газо-пылевой протосолнечной туманности;
- часть метеоритов от столкновений между астероидами или от их распада, они формировались в планетоподобных телах, достаточно крупных для того, чтобы их вещество частично расплавилось и фракционировало;
- гораздо меньшая часть метеоритов была выбита с поверхности планет Солнечной системы и их спутников (обнаружены метеориты с Марса, Луны).

Характеристики метеоритов

Морфология метеоритов

Прежде чем достигнуть земной поверхности, все метеориты на больших скоростях (от 5 км/с до 20 км/с) проходят сквозь слои земной атмосферы. В результате чудовищной аэродинамической нагрузки метеоритные тела приобретают характерные внешние признаки такие как: ориентированно-конусообразную или оплавленно-обломочную форму, кору плавления, и в результате абляции (высокотемпературной, атмосферной эрозии) уникальный регмаглиптовый рельеф.

Самым ярким признаком каждого метеорита является кора плавления. Если метеорит не разбился при своем падении на Землю или если он не был разбит кем-либо позднее, то он со всех сторон бывает покрыт корой плавления. Цвет и структура коры плавления зависит от типа метеорита. Часто кора плавления железных и железокаменных метеоритов имеет черный цвет, иногда с буроватым оттенком. Особенно хорошо видна кора плавления на каменных метеоритах, она черная и матовая, что характерно главным образом для хондритов. Однако иногда кора бывает сильно блестящей, как бы покрыта черным лаком; это характерно для ахондритов. Наконец, очень редко наблюдается светлая, полупрозрачная кора, сквозь которую просвечивается вещество метеорита. Кора плавления наблюдается, конечно, только на тех метеоритах, которые были найдены сразу же или вскоре после их падения.
Метеориты, долго пролежавшие в Земле, под влиянием атмосферных и почвенных агентов разрушается с поверхности. В результате кора плавления окисляется, выветривается и превращается в кору окисления или выветривания, принимая уже совершенно иной вид и свойства.

Вторым основным, внешним признаком метеоритов является наличие на их поверхности, характерных углублений - ямок, напоминающих как бы отпечатки пальцев в мягкой глине и называемых регмаглиптами или пьезоглиптами. Они имеют округлую, эллиптическую, полигональную или, наконец, сильно вытянутую в виде желобка форму. Иногда встречаются метеориты с совершенно гладкими поверхностями, совсем не имеющие регмаглиптов. Они очень напоминают по своему виду обычные булыжники. Регмаглиптовый рельеф полностью зависит от условий движения метеорита в земной атмосфере.

Удельный вес метеоритов

Метеориты разных классов резко отличаются по своему удельному весу. Используя измерения удельного веса отдельных метеоритов, произведенных различными исследователями, были получены следующие средние значения для каждого класса:

Железные метеориты - пределы от 7,29 до 7,88; среднее значение - 7,72;
- Палласиты (среднее значение) - 4,74;
- Мезосидериты - 5,06;
- Каменные метеориты - пределы от 3,1 до 3,84; среднее значение - 3,54;

Как видно из приведенных данных, даже каменные метеориты в большинстве случаев оказываются заметно тяжелее земных горных пород (вследствие большого содержания включений никелистого железа).

Магнитные свойства метеоритов

Еще одним отличительным признаком метеоритов являются их магнитные свойства. Не только железные и железокаменные метеориты, но и каменные (хондриты) обладают магнитными свойствами, то есть реагируют на постоянное магнитное поле. Это объясняется присутствием достаточно большого количества свободного металла - никелистого железа. Правда, некоторые довольно редкие типы метеоритов из класса ахондритов совершенно лишены металлических включений, или содержат их в незначительных количествах. Поэтому такие метеориты не обладают магнитными свойствами.

Химический состав метеоритов

Наиболее распространенными химическими элементами в метеоритах являются: железо, никель, сера, магний, кремний, алюминий, кальций, и кислород. Кислород присутствует в виде соединений с другими элементами. Эти восемь химических элементов и составляют основную массу метеоритов. Железные метеориты почти целиком состоят из никелистого железа, каменные - главным образом из кислорода, кремния, железа, никеля и магния, а железокаменные - приблизительно из равных количеств никелистого железа и кислорода, магния, кремния. Остальные химические элементы присутствуют в метеоритах в малых количествах.
Отметим роль и состояние основных химических элементов в составе метеоритов.

- Железо Fe.
Является важнейшей составной частью вообще всех метеоритов. Даже в каменных метеоритах среднее содержание железа составляет 15,5%. Оно встречается как в виде никелистого железа, представляющего собой твердый раствор никеля и железа, так и в виде соединений с другими элементами, образуя ряд минералов: троилит, шрейберзит, силикаты и др.

- Никель Ni.
Всегда сопровождает железо и встречается в виде никелистого железа, а также входит в состав фосфидов, карбидов, сульфидов и хлоридов. Обязательное присутствие никеля в железе метеоритов составляет их характерную особенность. Среднее отношение Ni:Fe=1:10, однако у отдельных метеоритов могут наблюдаться значительные отклонения.

- Кобальт Co.
Элемент, наряду с никелем являющийся постоянной составной частью никелистого железа; в чистом виде не встречается. Среднее отношение Co:Ni=1:10, но так же как и в случае с отношением железа и никеля, в отдельных метеоритах могут наблюдаться значительные отклонения. Кобальт входит в состав карбидов, фосфидов, сульфидов.

- Сера S.
Содержится в метеоритах всех классов. Она присутствует всегда, как составная часть минерала троилита.

- Кремний Si.
Является важнейшей составной частью каменных и железокаменных метеоритов. Присутствуя в них в виде соединений с кислородом и некоторыми другими металлами, кремний входит в состав силикатов, образующих основную массу каменных метеоритов.

- Алюминий Al.
В отличие от земных горных пород, алюминий встречается в метеоритах в значительно меньших количествах. Он находится в них в соединении с кремнием как составная часть полевых шпатов, пироксенов и хромита.

- Магний Mg.
Является важнейшей составной частью каменных и железокаменных метеоритов. Он входит в состав основных силикатов и занимает четвертое место в ряду других химических элементов, содержащихся в каменных метеоритах.

- Кислород O.
Составляет значительную долю вещества каменных метеоритов, входя в состав силикатов, слагающих эти метеориты. В железных метеоритах кислород присутствует в качестве составной части хромита и магнетита. В виде газа кислород в метеоритах обнаружен не был.

- Фосфор P.
Элемент, всегда присутствующий в метеоритах (в железных - в большем количестве, в каменных - в меньшем). Он входит в состав фосфида железа, никеля и кобальта - шрейберзита, минерала, характерного для метеоритов.

- Хлор Cl.
Встречается только в соединениях с железом, образуя характерный для метеоритов минерал - лавренсит.

- Марганец Mn.
Встречается в заметных количествах в каменных метеоритах и в виде следов - в железных.

Минеральный состав метеоритов

Основные минералы:

- Самородное железо: камасит (93,1% Fe; 6,7% Ni; 0,2 %Co) и тэнит (75,3% Fe; 24,4% Ni; 0,3% Co)
Самородное железо метеоритов представлено главным образом двумя минеральными видами, являющиеся твердыми растворами никеля в железе: камаситом и тэнитом. Они хорошо различаются в железных метеоритах при травлении полированной поверхности пятипроцентным раствором азотной кислоты в алкоголе. Камасит травится несравненно легче тэнита, образуя характерный только для метеоритов рисунок.

- Оливин (Mg,Fe) 2 .
Оливин является наиболее распространенным силикатом в метеоритах. Оливин встречается в виде крупных оплавленных округлых каплеобразных кристаллов, иногда сохранивших остатки граней включенных в железе палласитов; в некоторых железокаменных метеоритах (например «Брагин») он присутствует в виде угловатых осколков таких же крупных кристаллов. В хондритах оливин находится в виде скелетных кристаллов, участвуя в сложении колосниковых хондр. Реже он образует полнокристаллические хондры, а также встречается в отдельных маленьких и более крупных зернышках, иногда в хорошо образованных кристаллах или в осколках. В кристаллических хондритах оливин - главная составная часть в мозаике кристаллобластических зерен, слагающая такие метеориты. Замечательно, что в противоположность земному оливину, почти всегда содержащему в твердом растворе небольшую примесь никеля (до 0,2-0,3% NiO) оливин метеоритов его почти или совсем не содержит.

- Ромбический пироксен.
Ромбическому пироксену по распространенности принадлежит второе место среди силикатов метеоритов. Есть некоторые, правда, очень немногие метеориты, в которых ромбический пироксен является решительно преобладающей или главной составной частью. Ромбический пироксен иногда представлен не содержащим железо энстатитом (MgSiO 3), в других случаях его состав отвечает бронзиту (Mg,Fe)SiO 3 или гиперстену (Fe,Mg)SiO 3 с (12-25% FeO).

- Моноклинный пироксен.
Моноклинный пироксен в метеоритах значительно уступает по распространенности пироксену ромбическому. Он составляет существенную часть редкого класса метеоритов (ахондритов), таких как: кристалически-зернистых эвкритов и шерготитов, уреилитов, а также мелкообломочных брекчиевидных говардитов, т.е. полнокристаллических или брекчиевидных метеоритов, по минералогическому составу близко отвечающих очень распространенным земным габбро-диабазам и базальтам.

- Плагиоклаз (m CaAl 2 Si 2 O 8 . n Na 2 Al 2 Si 6 O 16).
Плагиоклаз встречается в метеоритах в двух существенно различных формах. Он является вместе с моноклинным пироксеном существенным минералом в эвкритах. Здесь он представлен акортитом. В говардитах плагиоклаз встречается в отдельных осколках или входит в состав обломков эвкритов, какие попадаются в этом типе метеоритов.

- Стекло.
Стекло представляет важную часть каменных метеоритов, особенно хондритов. Они почти всегда содержатся в хондрах, а некоторые из них целиком состоят из стекла. Стекло встречается также в виде включений в минералах. В некоторых редких метеоритах стекло обильно и составляет как бы цемент, связывающий другие минералы. Стекло обыкновенно имеет цвет бурый до непрозрачности.

Вторичные минералы:

- Маскелинит - прозрачный, бесцветный, изотропный минерал, имеющий состав и показатель преломления такой же, как у плагиоклаза. Одни считают маскелинит плагиоклазовым стеклом, другие - изотропным кристаллическим минералом. Он встречается в метеоритах в тех же формах, что и плагиоплаз и свойственен только метеоритам.

- Графит и «аморфный углерод». Углистые хондриты пронизаны черным, матовым, пачкающим руки углистым веществом, которое после разложения метеорита кислотами остается в нерастворимом остатке. Его описывали как «аморфный углерод». Исследование этого вещества взятого из метеорита Старое Борискино показало, что этот остаток представляет главным образом графит.

Акцессорные минералы: (добавочные)

- Троилит (FeS).
Сульфид железа - троилит - является в метеоритах чрезвычайно распространенным акцессорным минералом. В железных метеоритах троилит встречается преимущественно в двух формах. Наиболее распространенным видом его нахождения являются крупные (от 1-10 мм) в диаметре каплеобразные включения. Вторая форма - тонкие пластинки, вросшие в метеорит в закономерном положении: по плоскости куба первоначального кристалла железа. В каменных метеоритах троилит рассеян в виде мелких ксеноморфных зерен, таких же, как зерна встречающегося в этих метеоритах никелистого железа.

- Шрейберзит ((Fe,Ni,Co) 3 P).
Фосфид железа и никеля - шрейберзит - неизвестен среди минералов земных горных пород. В железных метеоритах он является почти постоянно присутствующим акцессорным минералом. Шрейберзит - белый (или слегка серовато-желтоватый) минерал с металлическим блеском, твердый (6,5) и хрупкий. Шрейберзит встречается в трех основных формах: в виде пластинок, в виде иероглифических включений в камасите и в виде игольчатых кристалликов - это так называемый рабдит.

- Хромит (FeCr 2 O 4) и магнетит (Fe 3 O 4).
Хромит и магнетит представляют распространенные акцессорные минералы каменных и железных метеоритов. В каменных метеоритах хромит и магнетит встречаются в зернах подобно тому, как они встречаются и в земных горных породах. Хромит более распространен; среднее количество его, вычисленное из среднего состава метеоритов составляет около 0,25%. Неправильные зерна хромита присутствуют в некоторых железных метеоритах, а магнетит, кроме того, входит в состав коры плавления (окисления) железных метеоритов.

- Лавренсит (FeCl 2).
Лавренсит, имеющий состав хлористого железа, представляет собой минерал довольно распространенный в метеоритах. В лавренсите метеоритов содержится также никель, отсутствующий в тех продуктах земных вулканических эксгаляций, где имеется хлористое железо, присутствующее, например, в изоморфной смеси с хлоридом магния. Лавренсит - минерал неустойчивый, он очень гигроскопичен и расплывается, находясь в воздухе. В метеоритах он был обнаружен в виде маленьких зеленых капелек, встречающихся как выпады в трещинках. В дальнейшем он буреет, принимает буро-красную окраску, и далее превращается в ржавые водные окислы железа.

- Апатит (3CaO.P 2 O 5 .CaCl 2) и меррилит (Na 2 O.3CaO.P 2 O 5).
Фосфат кальция - апатит, или кальция и натрия - меррилит, по-видимому, являются теми минералами, в которых заключен фосфор каменных метеоритов. Меррилит неизвестен среди земных минералов. Он очень похож на апатит по своему виду, но встречается обычно в ксеноморфных неправильных зернах.

Случайные минералы:

К случайным минералам, редко встречающимся в метеоритах можно отнести следующие: Алмаз (C), муассанит (SiC), когенит (Fe 3 C), осборнит (TiN), ольдгамит (CaS), добреелит (FeCr 2 S 4), кварц и тридимит (SiO 2), вейнбергерит (NaAlSiO 4 .3FeSiO 3), карбонаты.

Железные, железокаменные и ахондриты. Железные метеориты.

У большинства железных метеоритов, когда их распилят, отполируют и протравят кислотой, на обработанных поверхностях обнаруживается решетко- образный узор, который называют видманштеттовыми фигурами. Такой узор возникает в том случае, если при понижении температуры два кристаллизующихся минерала уже не могут полностью смешиваться в твердом виде.

Предположим, атомы двух элементов сходны, но не идентичны (таковы, например, атомы железа и никеля), и поэтому они, каждый в отдельности, образуют кристаллические решетки, слегка отличающиеся одна от другой. При высокой температуре эти два типа атомов могут свободно обмениваться в кристалле вследствие рыхлой упаковки в расширившейся кристаллической решетке. Но при понижении температуры различие между атомами разных типов становится заметным.

Наступает момент, когда энергия всей системы может быть уменьшена путем распределения атомов в две различные решетки с преобладанием разных элементов, даже если при этом в местах стыка решеток не получается хорошего совпадения границ.

Чтобы несовпадение было минимальным, новые решетки растут в материнской решетке вдоль преобладающих направлений в виде пластинок экссолюции (распада твердого раствора). Знакомый петрологам примерпертитовая структура в щелочных полевых шпатах.

Рассмотрим смесь, содержащую, скажем, 10% никеля в железе, при начальной температуре 1000°С

Рассмотрим смесь, содержащую, скажем, 10% никеля в железе, при начальной температуре 1000°С. При этой температуре оба элемента полностью смешиваются в твердом растворе, но когда температура падает до точки В, это уже не так. Ниже точки В внутри решетки тэнита (у-фазы никелистого железа) образуется камасит (а-фаза никелистого железа) , имеющий состав Вх. Дальнейшее охлаждение до точки С увеличивает несходство двух кристаллических решеток, хотя доли Ci и С2 должны быть такими, чтобы в общем составе было 10% Ni и 90% Fe.

Камасит образуется внутри тэнита вдоль определенных плоскостей

Камасит образуется внутри тэнита вдоль определенных плоскостей, соответствующих поверхностям октаэдра; поэтому для таких метеоритов иногда используется название «октаэдрит». Поверхности октаэдра (состоящего из двух пирамид, примыкающих основаниями) принадлежат только четырем плоскостям, так как противоположные грани параллельны, и на случайных срезах через кристалл появляются разнообразные видманштеттовы фигуры, похожие, однако, на узоры, которые видны на рис.
Для полного развития пластинок экссолюции необходимо, чтобы у атомов было достаточно времени для перераспределения путем диффузии в твердом состоянии, а поскольку при понижении температуры диффузия замедляется, в конце концов состав кристаллических решеток оказывается «замороженным». Чем быстрее происходит охлаждение, тем выше температура торможения диффузии. Детальное исследование состава пластинок экссолюции в ряде железных дает для скорости охлаждения величины порядка 1-10°С за миллион лет.

Такое медленное охлаждение лучше всего объясняется, если предположить, что каждый такой метеорит был частью горячего тела, остывавшего медленно из-за своего размера, а также вследствие изолирующего действия «мантии», состоявшей из силикатов. Расчеты показывают, что диаметр такого тела должен быть порядка нескольких сотен километров, что сравнимо с размерами крупных астероидов.