Санитарные требования к производственным зданиям. Санитарно-гигиенические требования к производственным помещениям

Характер и последствия воздействия на человека электрического тока зависят от следующих факторов:

· значения тока, проходящего через организм человека;

· электрического сопротивления человека;

· уровня приложенного к человеку напряжения;

· продолжительности воздействия электрического тока;

· пути тока через тело человека;

· рода и частоты электрического тока;

· условий внешней среды и других факторов.

Электрическое сопротивление тела человека. Тело человека является проводником электрического тока, но неоднородным по сопротивлению. Наибольшим сопротивлением

обладает кожа. Верхний роговой слой кожи в сухом и незагрязнённом состоянии может считаться диэлектриком, его сопротивление. Сопротивление тела при сухой и чистой коже от 3 до 100 кОм, внутренних органов 300-500 Ом. Обычно пренебрегают емкостным сопротивление, которое незначительно, и считают сопротивление человека чисто активным и неизменным. за расчётную величину принимают 1000 Ом. В реальных условиях сопротивление человека не является постоянной величиной и зависит от ряда факторов. Сопротивление снижают следующие:

· повреждение рогового слоя (порезы, царапины и др.);

· увлажнение кожи водой или потом;

· загрязнение вредными веществами, проводящими электрический ток;

· увеличение тока и время его прохождения;

· рост напряжения приложенного к телу тока;

· увеличение частоты тока;

На сопротивление тела также оказывает влияние площадь контакта и место касания, т. к. сопротивление кожи на разных участках неодинаково.

Величина тока и напряжение.

Ощутимый ток – электрический ток, вызывающий при прохождении через организм ощутимые раздражения (пороговые ощутимые токи). Переменный ток силой или постоянныйвызывают такие ощущения.

Неотпускающий ток – электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Пороговый неотпускающий ток составляетпеременного тока ипостоянного. Человек не может самостоятельно разжать руку, требуется помощь.

Фибрилляционный ток - электрический ток, вызывающий прохождении через организм фибрилляцию сердца. Пороговый фибрилляционный ток составляет переменного тока ипостоянного тока при длительности действия 1-2с. При токе болеепроисходит мгновенная остановка сердца.

Продолжительность воздействия. Влияние длительности прохождения тока через тело человека на исход поражения можно оценить эмпирической формулой: , где- ток, проходящий через тело человека, мА;- продолжительность прохождения тока, с. Эта формула действительна в пределах 0,1-1,0с. Её используют для определения предельно допустимых токов, проходящих через человека по пути рука – ноги, необходимых для расчёта защитных устройств.



Путь тока через тело человека. Возможные пути тока в теле человека также называют петлями тока. Наиболее часто встречаются петли: рука-рука, рука - ноги и нога - нога. Наиболее опасны петли голова – руки и голова – ноги, но эти петли встречаются относительно редко.

Род и частота электрического тока. Для напряжений 250-300В постоянный ток примерно в 4-5-раз безопаснее переменного. При более высоких напряжения постоянный ток более опасен, чем переменный (с частотой 50Гц). для переменного тока играет роль и его частота. С увеличением частоты переменного тока полное сопротивление тела человека уменьшается, следовательно повышается опасность поражения. Наибольшую опасность

представляет ток частотой от 50до 100Гц; при дальнейшем повышении частоты опасность поражения уменьшается и полностью исчезает при частоте 45-50кГц. Эти токи сохраняют опасность ожогов. Снижение опасности тока становится практически заметным при частоте 1-2кГц.

Индивидуальные свойства человека. Физически здоровые и крепкие люди легче переносят электрические удары. Повышенной восприимчивостью к электрическому току отличаются люди, страдающие болезнями кожи, сердечно-сосудистой системы, лёгких, нервными болезнями и другие. Такие люди не допускаются к работе на электроустановках.

Условия внешней среды.

«Правила устройства электроустановок» делят все помещения по опасности поражения людей электрическим током на следующие классы:

1. Помещения без повышенной опасности характеризуются отсутствием условий, создающих повышенную или особую опасность.



2. Помещения с повышенной опасностью характеризуются наличием одного из следующих условий, создающих повышенную опасность: а) сырости (относительная влажность воздуха длительно превышает 75%); б)высокой температуры (выше 35); в) токопроводящей пыли; г) токопроводящих полов (металлические, земляные, железобетонные, кирпичные и др.); д) возможности одновременного прикосновения человека к имеющим соединения с землёй металлоконструкциям здания, технологическим аппаратам, механизмам, и т. п., с одной стороны, и металлическим корпусам электрооборудования - с другой.

3. Особо опасные характеризуются наличием одного из следующих условий: а) особой сырости (относительная влажность близка к 100%): потолок, тены, под и предметы в помещении покрыты влагой0; б) химически активной или органической среды (разрушающей изоляцию и токоведущие части электрооборудования); в) одновременно двух или более условй повышенной опасности.

Мероприятия по соблюдению правил техники безопасности при выполнении работ, связанных с электричеством

При разработке мер по защите от поражения электрическим током и высокочастотным излучением необходимо строго руководствоваться правилами техники безопасности при эксплуатации электростанций, электросетей

В целях недопущения случаев электротравматизма запрещается:

проводить всякого рода работы на электролинии под напряжением;

выполнять монтажно-ремонтные работы на электролиниях, на радиостанциях без защитных средств (диэлектрических ковриков, перчаток, фартуков, галош) даже при условии отключения токоприемников от питающей электросети;

допускать к эксплуатации и производству работ на электросетях, источниках электроэнергии и электрооборудовании лиц, не имеющих специальной подготовки и допуска;

включать и выключать питание электролиний, проложенных в районах целей, без распоряжения руководителя полетами или начальника авиационного полигона.

Лица работающие с током должны регулярно проводиться занятия по технике безопасности, на которых разъясняется недопустимость беспечного и неосторожного обращения с источниками электроэнергии, электросетями и электрооборудованием.

С лицами, работающими на станочном оборудовании, лесопильных рамах, циркулярных пилах и другом оборудовании организует занятия по технике безопасности и систематическую проверку знания ими правил техники безопасности.

В мастерской, в гаражах, на электростанциях, на радиолокационных станциях и других объектах должны быть утвержденные начальником авиационного полигона инструкции по соблюдению правил охраны труда.

Допускается к работе с электрооборудованием после сдачи зачетов по знанию охраны труда.

34 Вибрация

Вибрация – это движение точки или механической системы, при котором происходит поочередное возрастание и убывание обычно во времени значений какой-либо величины, ее характеризующей.

По механизму генерации различают вибрации с силовым, кинематическим и па-раметрическим возбуждением.

Силовое возбуждение – это возбуждение вибрации системы вынуждающими силами и (или) моментами.

Кинематическое возбуждение – возбуждение вибрации системы сообщением каким-либо ее точкам заданных движений, не зависящих от состояния системы.

Параметрическое возбуждение – это возбуждение вибрации системы не зависящим от состояния системы изменением во времени одного или нескольких ее параметров (массы, момента инерции, коэффициентов жесткости и сопротивления

По способу передачи на человека вибрацию делят на 2-е группы:

1. Общая, которая действует на тело сидящего или стоящего человека и оценивается в октавных полосах f = 2, 4, 8, 16, 31,5; 63 Гц.

2.Локальная, которая передаётся через руки на частотах f = 8, 16, 31,5; 63, 125, 250, 500, 1000 Гц.

По источнику возникновения вибрацию делят на три категории:

1.Транспортная (подвижные машины на местности).

2.Транспортно-технологическая

(краны, погрузчики).

3. Технологическая (рабочие места).

По времени действия вибрацию подразделяют на следующие категории.

1.Постоянная. Здесь величина контролируемого параметра за время наблюдения изменяется не более чем в два раза;

2.Непостоянная. Здесь величина контролируемого параметра изменяется более чем в 2 раза за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с.

Непостоянная вибрация может быть колеблющейся, прерывистой и импульсной.

Характер и последствия воздействия на человека электрического тока зависит от следующих факторов:

Электрического сопротивления тела человека;

Величины напряжения и тока;

Продолжительности действия электрического тока;

Пути тока через тело человека;

Рода и частоты электрического тока;

Индивидуальные свойства человека;

Условий внешней среды.

Электрическое сопротивление тела человека. Сила тока Ih, проходящего через какой-либо участок тела человека, зависит от подведенного напряжения Uпр (напряжения прикосновения) и электрического сопротивления Z т, оказываемого току данным участком тела:

На участке между двумя электродами электрическое сопротивление тела человека в основном состоит из сопротивлений двух тонких наружных слоев кожи, касающихся электродов, и внутреннего сопротивления остальной части тела.

Плохо проводящий ток наружный слой кожи, прилегающий к электроду, и внутренняя ткань, находящиеся под этим слоем, как бы образуют обкладки конденсатора емкостью С с сопротивлением r н (рис.7.1). Из схемы замещения видно, что в наружном слое кожи ток протекает по двум параллельным путям; через активное наружное сопротивление Rн и емкость, электрическое сопротивление которой

, где Wpf - угловая частота, Гц; f - частота тока, Гц,

Рис. 7.1. Электрическая схема замещения сопротивления наружного слоя кожи

а – схема контакта электрода; б – электрическая схема замещения; 1 – электрод; 2 – наружный слой кожи; 3 – внутренняя область кожи.

Тогда полное сопротивление наружного слоя кожи для переменного тока:

(7.2)

Сопротивление r н и емкость C зависит от площади электродов (площадь контакта). С ростом площади контакта r н уменьшается, а емкость C увеличивается. Поэтому увеличение площади контакта приводит к уменьшению полного сопротивления наружного слоя кожи. Опыты показали, что внутреннее сопротивление тела r в можно рассматривать как чисто активное. Таким образом, для пути тока «рука – рука» общее электрическое сопротивление тела может быть представлено схемой замещения, представленной на рисунке 7.2.



Рис. 7.2. Электрическая схема замещения сопротивления тела человека: 1 – электрод; 2 – наружный слой кожи; r вр , r вк - внутреннее сотротивление рук и корпуса.

С увеличением частоты тока из-за уменьшения Xc сопротивление тела человека уменьшается и при больших частотах (более 10 кГц) практически становится равным внутреннему сопротивлению rв. Зависимость сопротивления тела человека от частоты приведена на рис. 7.3.

Между током, протекающим через тело человека, и приложенным к нему напряжением существует нелинейная зависимость: с увеличением напряжения сила тока растет быстрее. Это объясняется главным образом нелинейностью электрического сопротивления тела человека. Так, при напряжении на электродах 40 … 45 В в наружном слое кожи возникают значительные напряженности электрического поля, при которых полностью или частично происходит пробой наружного слоя, что снижает полное сопротивление тела человека (рис. 7.4.) При напряжении 127…220 В оно практически падает до значения внутреннего сопротивления тела. Внутреннее сопротивление тела считается активным. Его величина зависит от длины поперечного размера участка тела, по которому проходит ток.

В качестве расчетной величины при переменном токе промышленной частоты принимают активное сопротивление тела человека равное 1000 0м.

В действительных условиях сопротивление тела человека не является постоянной величиной. Оно зависит от ряда факторов, в том числе от состояния кожи, состояния окружающей среды, параметров электрической цепи и др.

Повреждение рогового слоя (порезы, царапины, ссадины и др.) снижает сопротивление тела до 500 … 700 Ом, что увеличивает опасность поражения человека током.

Такое же влияние оказывает увлажнение кожи водой или потом. Т.о., работа с электроустановками влажными руками или в условиях, вызывающих увлажнение кожи, а также при повышенной температуре, вызывающей усиленное потовыделение, усугубляет опасность поражения человека током.

Загрязнение кожи вредными веществами, хорошо проводящими электрический ток (пыль, окалина и т.п.) приводят к снижению ее сопротивления.

На сопротивление тела оказывает влияние площадь контактов, а так же место касания, так как у одного и того же человека сопротивление кожи неодинаково на разных участках тела. Наименьшим сопротивлением обладает кожа лица, шеи, рук на участке выше ладоней и в особенности на стороне, обращенной к туловищу, подмышечных впадинах, тыловой стороны кисти и др. Кожа ладоней и подошв имеет сопротивление, во много раз превышающее сопротивление кожи других участков тела.

С увеличение тока и времени его прохождения сопротивление тела человека падает, так как при этом усиливается местный нагрев кожи, что приводит к расширению сосудов, к усилению снабжения этого участка кровью и увеличению потовыделения.

Сопротивление тела человека зависит от пола и возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Это объясняется толщиной и степенью огрубления верхнего слоя кожи, Кратковременное (несколько минут) снижение сопротивления тела человека (на 20 …50%) вызывает внешние, неожиданно возникающие физические раздражения: болевые (удары, уколы), световые и звуковые.

Величина напряжения и тока. Основным фактором, обуславливающим исход поражения электрическим током, является сила тока проходящего через тело человека (табл. 7.1)

Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь, постольку, поскольку оно определяет значение тока, проходящего через человека.

Таблица 7.1

Характер воздействия тока

Ток, проходящий через тело человека, мА Переменный (50 Гц) ток Постоянный ток
0,5 … 1,5 Начало ощущений: слабый зуд, пощипывание кожи Не ощущается
2 … 4 Ощущение распространяется на запястье; слегка сводит мышцы. Не ощущается
5 … 7 Болевые ощущения усиливаются по всей кисти; судороги; слабые боли во всей руке до предплечья Начало ощущений; слабый нагрев кожи под электродами
8 … 10 Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов. Усиление ощущения.
10 … 15 Едва переносимы боли во всей руке. Руки невозможно оторвать от электродов. С увеличением продолжительности протекания тока боли усиливаются. Значительный нагрев под электродами и в прилегающей области кожи.
20 … 25 Сильные боли. Руки парализуются мгновенно, оторвать их от электродов невозможно. Дыхание затруднено. Ощущение внутреннего нагрева, незначительное сокращение мышц рук.
25 … 50 Очень сильная боль в руках и в груди. Дыхание крайне затруднено. При длительном воздействии может наступить остановка дыхания или ослабление сердечной деятельности с потерей сознания Сильный нагрев, боли и судороги в руках. При отрыве рук от электродов возникают сильные боли.
50 … 80 Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном воздействии может наступать фибрилляция сердца Очень сильный поверхностный и внутренний нагрев. Сильные боли в руке и в области груди. Руки невозможно оторвать от электродов из-за сильных болей.
80 … 100 Фибрилляция сердца через 2…3 с.; еще через несколько секунд – остановка дыхания. То же действие выраженное сильнее. При длительном действии остановка дыхания.
То же действие за меньшее время. Фибрилляция сердца через 2…3 с.; еще через несколько секунд остановка дыхания.

Из приведенной таблицы можно выделить следующие пороговые значения тока:

О щ у т и м ы й т о к - электрический ток, вызывающий при прохождении через организм ощутимые раздражения, Ощутимые раздражения взывает переменный ток силой 0,6 … 1,5 мА и постоянный – силой 5 … 7 мА. Указанные значения являются пороговыми ощутимымитоками; с них начинается область ощутимых токов.

Н е о т п у с к а ю щ и й т о к – электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Пороговый неотпускающий ток составляет 10 … 15 мА переменного тока и 50 … 60 мА постоянного. При таком токе человек уже не может самостоятельно разжать руку, в которой зажата токоведущая часть, и оказывается как бы прикованным к ней.

Ф и б р и л л я ц и о н н ы й т о к – электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Пороговый фибрилляционный ток составляет 100 мА переменного тока и 300 мА постоянного при длительности 1 … 2 с по пути «рука-рука» или «рука – ноги». Фибрилляционный ток может достичь 5 А. Ток больше 5 А фибрилляцию сердца не вызывает. При таких токах происходит мгновенная остановка сердца.

Пороговые (наименьшие) значения ощутимого, неотпускающего и фибрилляционных токов представляют собой случайные величины, нормируемые значения которых определяются законом распределения и его параметрами. Численные значения токов соответствуют определенной вероятности возникновения данной биологической реакции.

Допустимые для человека токи оценивают по трем критериям электробезопасности.

Первый критерий – ощутимый ток. В качестве первого критерия для переменного тока частотой 50 Гц принят ток I = 0,6 мА, который не вызывает нарушений деятельности организма. Допускаемая длительность протекания такого тока через человека не более 10 мин.

Второй критерий – отпускающий ток. В качестве второго критерия электробезопасности принят ток I = 6 мА, при протекании которого через человека вероятность отпускания равна 99,5%. Длительность воздействия такого тока ограничивается защитной реакцией самого человека.

Третий критерий – нефибрилляционный ток. Это ток промышленной частоты, который при длительном воздействии 1 … 3 с не вызывает фибрилляцию сердца у человека массой 50 кг с некоторым запасом принят равным 50 мА.

Таким образом, величина тока оказывает существенное влияние на степень поражения человека. При одинаковой длительности протекания тока через человека характер воздействия существенно изменяется от ощущения (0,6 … 1,6 мА) до неотпускания (6 … 24 мА) и фибрилляции сердца (более 50 мА).

Продолжительность действия электрического тока. Существенное влияние на исход поражения оказывает длительность прохождения тока через тело человека. Продолжительное действие тока приводит к тяжелым, а иногда смертельным поражениям.

При кратковременном воздействии (0,1 … 0,5 с) ток порядка 100 мА не вызывает фибрилляции сердца. Если увеличить длительность воздействия до 1 с, то этот же ток может привести к смертельному исходу. С уменьшением длительности воздействия значения допустимых для человека токов существенно увеличиваются. Так, при изменении времени воздействия от 1 до 0,1 с допустимый ток возрастет, примерно, в 16 раз.

Кроме того, сокращение длительности воздействия электрического тока уменьшает опасность поражения человека исходя из некоторых особенностей работы сердца.

Схема электрокардиограммы

Продолжительность одного периода кардиоцикла (рис. 7.5.) составляет 0,75 … 0,85 с. В каждом кардиоцикле наблюдается период систолы, когда желудочки сердца сокращаются (пик QRS) и выталкивают кровь в артериальные сосуды. Фаза Т соответствует окончанию сокращения желудочков и они переходят в расслабленное состояние.

В период диастолы желудочки наполняются кровью. Фаза Р соответствует сокращению предсердий. Установлено, что сердце наиболее чувствительно к воздействию электрического тока во время фазы Т кардиоцикла. Для того, чтобы возникла фибрилляция сердца, необходимо совпадение по времени воздействия тока с фазой Т, продолжительность которой 0,15 … 0,2 с. С сокращением длительности воздействия электрического тока вероятность такого совпадения становится меньше, а следовательно, уменьшается опасность возникновения фибрилляции сердца.

В случае несовпадения времени прохождения тока через человека с фазой Т, токи значительно превышающие пороговые значения, не вызовут фибрилляции сердца.

Влияние длительности прохождения тока через тело человека на исход поражения можно оценить эмпирической формулой

I h = 50/ t (7.3)

где I h – ток, проходящий через тело человека, мА; t - продолжительность прохождения тока, с.

Эта формула действительна в пределах 0,1 … 1,0 с. Ее используют для определения предельно допустимых токов, проходящих через человека по пути «рука – ноги», необходимых для расчета защитных устройств.

Пути тока через тело человека. Путь тока в теле человека зависит от того, какими участками тела пострадавший прикасается к токоведущим частям, его влияние на исход поражения проявляется еще и потому, что сопротивление кожи на разных участках тела неодинаково.

Наиболее опасно прохождение тока через дыхательные мышцы и сердце. Так отмечено, что на пути «рука – рука» через сердце проходит 3,3% общего тока, «левая рука – ноги» - 3,7%, «правая рука – ноги» - 6,7%, «нога – нога» - 0,4%, «голова – ноги» - 6,8%, «голова – руки» - 7%.

По данным статистики потеря трудоспособности на три дня и более наблюдалась при пути тока «рука – рука» в 83% случаев, «левая рука – ноги» - 80%, «правая рука – ноги» - 87%, «нога – нога» - в 15% случаев.

Таким образом, путь тока влияет на исход поражения; ток в теле проходит не обязательно по кратчайшему пути, что объясняется большой разницей в удельном сопротивлении различных тканей (костная, мышечная, жировая и т.д.).

Наименьший ток через сердце проходит при пути тока по нижней петле «нога – нога». Однако из этого не следует делать выводы о малой опасности нижней петли (действие шагового напряжения). Обычно если ток достаточно велик, он вызывает судороги ног, и человек падает, после чего ток уже проходит через грудную клетку, т.е. через дыхательные мышцы и сердце.

Род и частота тока. Установлено, что переменный ток более опасен, чем постоянный. Это следует также из табл. 7.1., так как одни и те же воздействия вызываются большими значениями постоянного тока, чем переменного. Однако это характерно для относительно небольших напряжений (до 250 … 300 В). Считают, что напряжение 120 В постоянного тока при одинаковых условиях эквивалентно по опасности напряжению 40 В переменного тока промышленной частоты. При более высоких напряжениях опасность постоянного тока возрастает.

В интервале напряжений 400 … 600 В опасность постоянного тока практически равна опасности переменного тока с частотой 50 Гц, а при напряжении более 600 В постоянный ток опаснее переменного. При попадании под постоянное напряжение особенно резкие болевые ощущения возникают в момент замыкания и размыкания электрической цепи.

Исследования показали, что самыми неблагоприятными для человека являются токи промышленной частоты (50 Гц). С увеличение частоты (от 50 Гц до 0) значения неотпускающего тока возрастают (рис. 7.6.) и при частоте равной нулю (постоянный ток – болевой эффект), они становятся больше примерно в 3 раза.

Рис. 7.6. Зависимость неотпускающего тока от частоты:

1 – для 0,5% испытуемых; 2 – для 99,5% испытуемых

При увеличении частоты (более 50 Гц) значения неотпускающего тока возрастают. Дальнейшее же повышение частоты тока сопровождается снижением опасности поражения, которая полностью исчезает при частоте 45 … 50 кГц. Но эти токи могут вызвать ожоги как при возникновении электрической дуги, так и при прохождении их непосредственно через тело человека. Снижение опасности поражения током с повышением частоты практически заметно при частоте 1000 … 2000 Гц.

Индивидуальные свойства человека. Установлено что, физически здоровые и крепкие люди легче переносят электрические удары.

Повышенной восприимчивостью к электрическому току отличаются лица, страдающие болезнями кожи, сердечно-сосудистыми заболеваниями, органов внутренней секреции, легких, нервными болезнями и др.

Правила техники безопасности при эксплуатации электроустановок предусматривают отбор персонала для обслуживания действующих электроустановок по состоянию здоровья. С этой целью проводится медицинское освидетельствование лиц при поступлении на работу и периодически 1 раз в два года в соответствии со списком болезней и расстройств, препятствующих допуску к обслуживанию действующих электроустановок.

Условия внешней среды. Влажность и температура воздуха, наличие заземленных металлических конструкций и полов, токопроводящей пыли оказывают дополнительное влияние на условия электробезобасности. Степень поражения электрическим током во многом зависит от плотности и площади контакта человека с токоведущими частями. Во влажных помещениях с высокой температурой или наружных электроустановках складываются неблагоприятные условия, при которых площадь контакта человека с токоведущими частями увеличивается. Наличие заземленных металлических конструкций и полов создает повышенную опасность поражения вследствие того, что человек практически постоянно связан с одним полюсом (землей) электроустановки. В этом случае любое прикосновение человека к токоведущим частям сразу приводит к двухполюсному включению его в электрическую цепь. Токопроводящая пыль также создает условия для электрического контакта как с токоведущими частями, так и с землей.

В зависимости от наличия перечисленных условий, повышающих опасность воздействия тока на человека, все помещения по опасности поражения людей электрическим током подразделяются на следующие классы: без повышенной опасности, с повышенной опасностью, особо опасные.

Помещения без повышенной опасности характеризуются отсутствием условий, создающих повышенную или особую опасность.

Помещения с повышенной опасностью характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

Сырости (относительная влажность воздуха длительно превышает 75%) или токопроводящей пыли;

Токопроводящих полов (металлические, земляные, железобетонные, кирпичные и др.);

Высокой температуры (выше +35 0 С);

Возможности одновременного прикосновения человека к имеющим соединения с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования – с другой.

Особо опасные помещения характеризуются наличием одного из следующих условий, создающих особую опасность:

Особой сырости (относительная влажность воздуха близка к 100%: потолок, стены, пол и предметы в помещении покрыты влагой);

Химически активной или органической среды (разрушающей изоляцию и токоведущие части электрооборудования);

Одновременно двух или более условий повышенной опасности.

Характер и последствия воздействия на человека электрического тока зависят от следующих факторов:

Электрического сопротивления тела человека;

Величины действующего на человека напряжения и силы тока;

Продолжительности воздействия электрического тока;

Рода и частоты электрического тока;

Пути тока через человека;

Условия внешней среды и факторы трудового процесса.

Электрическое сопротивление тела человека. Тело человека является проводником электрического тока, неоднородным по электрическому сопротивлению. Наибольшее сопротивление электрическому току оказывает кожный покров, поэтому сопротивление тела человека определяется главным образом состоянием кожного покрова.

Кожный покров состоит из двух основных слоёв: наружного – эпидермиса и внутреннего – дермы. Эпидермис также имеет слоистую структуру, в которой самый верхний слой называется роговым. Роговой слой в сухом и незагрязнённом состоянии можно рассматривать как диэлектрик – его удельное электрическое сопротивление достигает 10 5 …10 6 Ом·м, т.е. в тысячи раз превышает сопротивление других слоев кожного покрова и внутренних тканей организма. Сопротивление внутреннего слоя кожного покрова (дермы) незначительно; оно во много раз меньше сопротивления рогового слоя. Сопротивление тела человека при сухом, чистом и неповреждённом кожном покрове колеблется от 3 до 100 кОм и более, а сопротивление внутренних органов составляет всего 300…500 Ом.

В качестве расчётной величины при действии переменного тока промышленной частоты (50 Гц) применяют активное сопротивление тела человека равное 1000 Ом. В действительных условиях сопротивление тела человека не является постоянной величиной. Оно зависит от ряда факторов, в том числе: от состояния кожного покрова и окружающей среды; параметров электрической цепи.

Повреждение рогового слоя кожного покрова (порезы, царапины, ссадины и т.п.) снижают сопротивление тела до 500…700 Ом, что увеличивает опасность поражения электрическим током. Такое же влияние оказывают: увлажнение кожного покрова (например, пόтом); загрязнение вредными веществами (например, пыль, окалина и т.п. вещества).

На сопротивление тела человека оказывает влияние площадь контакта с источником тока, чем она больше, тем меньше сопротивление. До десятков и даже единиц Ом может уменьшаться сопротивление кожного покрова в местах расположения акупунктурных точек на теле человека.

Величина тока и напряжения. Основным фактором, обусловливающим исход поражения электрическим током, является сила тока, проходящего через тело человека. Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь постольку, поскольку оно определяет величину тока, проходящего через человека.


В практике электротравматизма принято выделять следующие пороги действия электрического тока:

– пороговый электрический ток – величина тока, вызывающая в организме человека едва ощутимые раздражения (небольшое повышение температуры в зоне контакта систочником элекатроэнергии, неуёмное дрожание пальцев рук, повышенное потоотделение и т.п. факторы). Эти ощущения вызывает сила тока: 0,6…1,5 мА (для переменного тока частотой 50 Гц); 5…7 мА (для постоянного тока);

– неотпускающий ток, – величина электрического тока, вызывающая непреодолимые судорожные сокращения мышц рук, в которых зажат проводник. Величина неотпускающего тока при времени действия 1…3 с составляет 10…15 мА для переменного и 50…60 мА для постоянного токов. При такой силе тока человек уже не может самостоятельно разжать руки, в которых зажаты токоведущие части электрооборудования;

– фибрилляционный (смертельный) ток – величина электрического тока, вызывающая фибрилляцию сердца (разновременное и разрозненное сокращение отдельных волокон сердечной мышцы, неспособное поддерживать её самостоятельную работу). При длительности действия 1…3 с по пути рука-рука, рука-ноги величина этого тока составляет ~ 100 мА для переменного и ~ 500 мА для постоянного тока. В то же время сила тока величиной 5 А и более фибрилляцию сердечной мышцы не вызывает – происходит мгновенная остановка сердца и паралич мышц грудной клетки.

Сила пороговых токов считается длительно безопасной величиной для человека.

Безопасных напряжений среди тех величин, которые используются в практической деятельности человека, не существует, поскольку сила тока при любом малом из указанных напряжений может превысить силу пороговых токов при аномально малых сопротивлениях тела человека. Например, контакт полюсов гальванического элемента (U = 1,5 В) с акупунктурными точками человека (R ~ 10 Ом) может вызвать протекание постоянного электрического тока между ними силой 1,5 А, что даже при кратковременном действии превышает смертельную величину в 3 раза.

Продолжительность воздействия электрического тока. С повышением времени протекания тока через человека повышается вероятность прохождения его через сердце в момент наиболее уязвимой для всего кардиоцикла фазы Т (окончание сокращения желудочков и перехода их в расслабленное состояние ~ 0,2 с). Кроме того, с увеличением времени протекания электрического тока через человека усугубляются все негативные явления как местного, так и общего действия.

Род тока и частота переменного электрического тока. Постоянный ток примерно в 4…5 раз безопаснее переменного промышленной частоты (50 Гц). Объяснить этот факт можно сложной структурой сопротивления тела человека. Сопротивление человеческого тела включает в себя активную (омическую) и ёмкостную составляющие, причём последняя возникает при включении человека в электрическую цепь (Рис. 1).

Рис. 1. Упрощённая электрическая схема замещения сопротивления тела человека

Ra – активная (омическая) составляющая; Rс – ёмкостная составляющая

Наличие ёмкостной составляющей обусловлено тем, что между электродом, касающимся тела человека (корпус электрооборудования, провода электросети и т.п.), и землёй (пол, площадка для обслуживания оборудования и т.п.), на которой стоит человек, расположен роговой слой кожного покрова – практически диэлектрик, что образует конденсаторную систему (электрическую ёмкость). Если через человека протекает постоянный ток, то он воздействует только на активную составляющую общего сопротивления (Ra), так как электрическая ёмкость для постоянного тока является разрывом цепи. Переменный ток протекает и через активную и через ёмкостную составляющие общего сопротивления человека (Ra и Rс), что, при прочих равных условиях, приводит к бόльшему отрицательному воздействию на организм.

С повышением частоты переменного тока (относительно 50 Гц) его общее негативное действие снижается, сравниваясь на частоте ~ 1000 Гц с действием постоянного тока. На частоте ~ 50 Гц и выше переменный ток общего действия на человека практически не оказывает. Это явление можно объяснить тем, что наибольшая плотность зарядов (ионов, электронов) в плоскости поперечного сечения проводника при протекании переменного тока высокой частоты наблюдается на периферии этого сечения; если в качестве проводника рассматривать человека, то на периферии поперечного сечения туловища и конечностей мы увидим кожный покров, обладающий сопротивлением, близким к таковому у диэлектриков. Местное действие переменного тока высокой частоты при этом сохраняется.

Это положение справедливо лишь до напряжений 250…300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный с частотой 50 Гц.

Путь тока через тело человека играет существенную роль в исходе поражения, т.к. электрический ток может пройти через жизненно важные органы: сердце, лёгкие, головной мозг и др. Влияние пути тока на исход поражения определяется также величиной сопротивления кожного покрова человека на различных участках его тела.

Количество возможных путей тока через тело человека, называемых петлями тока, достаточно много. Чаще всего встречаются ток протекает по петлям: рука-рука; рука-ноги; нога-нога; голова-руки; голова-ноги. Наиболее опасными являются петли: голова-руки и голова-ноги, но они возникают относительно редко.

Условия внешней среды и факторы трудового процесса оказывают существенное влияние на величину сопротивления кожного покрова и в целом тела человека. Так, например, повышенная температура (~ 30 ° С и выше) и относительная влажность воздуха (~ 70 % и выше) способствуют повышенному потоотделению, а, следовательно, резкому уменьшению активного сопротивления тела человека. Интенсивная физическая работа приводит к аналогичному результату.


На этапах проектирования и строительства необходимо учитывать санитарный класс помещения, нормы полезной площади для работающих и под оборудование, а также соблюдать ширину проходов для безопасного и удобного обслуживания оборудования.

Помещения, в которых выделяется большое избыточное количество влаги или явного тепла (более 83,8 кДж/(м 3 ∙ ч)), следует располагать у наружной стены здания с подветренной стороны. Помещения, в которых процесс производства связан с выделением пыли, паров, газов или сопровождается шумом, вибрацией, должны быть изолированы от других помещений. Ворота и технологические проемы в наружных стенах зданий, как правило, проектируют с тепловыми воздушными завесами, а входы в отапливаемые здания – с двойными тамбурами при глубине открытия каждого отделения из них не менее 1,2 м.

Объем производственного помещения на одного работающего должен быть не менее 15 м 3 , а площадь – не менее 4,5 м 2 .

Высоту помещений выбирают в зависимости от характера технологического процесса такой, чтобы обеспечивать удаление избыточных количеств теплоты, влаги и газов, но не менее 3м.

Стены и потолки зданий должны быть достаточно теплостойкие, чтобы на их внутренних поверхностях не конденсировалась влага.

В световых проемах предусматривают фрамуги или форточки с приспособлениями для открывания с пола помещения и фиксации в требуемом положении.

Ворота, двери и окна должны легко открываться на всю ширину проема. Двери и ворота оснащают устройствами для удержания их в открытом положении.

Санитарно-гигиенические требования к бытовым помещениям

Санитарно-бытовые помещения делят на общие, которые должны быть на любом предприятии, и специальные, устраиваемые с учетом численности работающих или особенностей выполнения производственных процессов.

К бытовым помещениям общего назначения относят гардеробные для хранения уличной, домашней и рабочей одежды, уборные, умывальные и душевые. Их устраивают отдельно для мужчин и женщин и объединяют в блоки. Специальные бытовые помещения – это душевые, здравпункты, ингалятории, комнаты для личной гигиены женщин, курительные, респираторные, обогревания работающих, отдыха, стирки, механической и химической чистки, обезвреживания и ремонта рабочей одежды и обуви.

Обычно бытовые помещения располагают в пристройках к производственным зданиям, реже – в отдельно стоящих зданиях. Переходы между вспомогательными и производственными зданиями должны быть отапливаемые.

Гардеробные предназначены для хранения уличной, домашней и рабочей одежды открытым или закрытым способом. Гардеробные для хранения домашней или рабочей одежды оборудуют скамьями шириной 0,3 м из расчета 0,6 м длины на одно место. Расстояние между скамьями должно быть 1 м.

Умывальные размещают в помещениях смежных с гардеробными для рабочей одежды. Допускается располагать умывальники в гардеробных при условии, что расстояние от умывальников до шкафов не менее 2м.

Курительные предусматривают в тех случаях, когда по условиям производства или пожарной безопасности курение в производственных помещениях или на территории предприятия запрещено, а также при объеме производственного помещения на одного работающего менее 50 м 3 . Курительные оборудуют вытяжной вентиляцией и устанавливают в них урны или баки с водой для окурков.

Предприятия с численностью работающих в самой многочисленной смене 200 человек и более должны иметь столовые. Если работающих меньше 200, то устраивают буфет с отпуском горячих блюд.

Нормы площади помещений на 1 человека, единицу оборудования, расчетное число работников, обслуживаемых на единицу оборудования в санитарно-бытовых помещениях, следует принимать:

Площадь помещений на человека, м 2:

Гардеробные уличной одежды, раздаточные спецодежды, помещения для обогрева или охлаждения…………………………………………………………0,1

Кладовые для хранения одежды:

при обычном составе спецодежды………………………………………0,04

расширенном составе спецодежды………………………………………0,06

громоздкой спецодежде…………………………………………………..0,08

Респираторные…………………………………………………………….0,07

Помещения централизованного склада спецодежды и средств индивидуальной защиты:

для хранения……………………………………………………………..0,07

выдачи, включения кабины примерки и подгонки……………………0,02

Помещения дежурного персонала с местом для уборочного инвентаря, курительные при уборных или помещениях для отдыха…………………….0,02

Места для очистки обуви, бритья, сушки волос……………………….0,01

Помещения для сушки, механической чистки или обезвреживания спецодежды………………………………………………………………...……..0,15

Помещения для мытья спецодежды, касок и спецобуви…………………0,3

Площадь помещений на единицу оборудования, м 2:

Преддушевые при кабинах душевых открытых и со сквозным проходом…………………………………………………………………………..0,7

Тамбуры при уборных с кабинами………………………………………...0,4

Санитарные требования к производственным зданиям и помещениям зависят от их назначения и установлены вышеуказанными документами.

При планировке производственных помещений необходимо учитывать санитарную характеристику производственных процессов, соблюдать нормы полезной площади для работающих, а также нормативы площадей для размещения оборудования и необходимую ширину проходов и проездов, обеспечивающих безопасную работу и удобное обслуживание оборудования.

Производственные помещения должны быть светлыми, теплыми и сухими. Площади рабочих помещений должны быть такими, чтобы на одного рабочего приходилось не менее 4 м 2 . Объем производственного помещения на каждого работающего – не менее 15 м 3 . Высота дверей и проходов нормирована не ниже 2,0 м, высота помещений – не менее 3,2 м, расстояние от пола до выступающих конструктивных элементов – не менее 2,6 м, минимальная ширина дверей – 0,8 м, а ширина коридоров – 1,4 м, ширина пешеходных галерей – 1,5 м. Окна проектируют так, чтобы падающий свет освещал все рабочие места. Окна должны быть оборудованы открывающимися форточками или фрамугами неза­висимо от наличия вентиляционных сооружений. Световые фонари за­стекляются армированным стеклом. Если для этой цели применяют простое стекло, то под фонарями подвешивают металлические сетки.

Склады для хранения используемых в работе материалов следует располагать рядом с рабочими помещениями. Размеры их определяют в зависимости от объемов хранящихся в них материалов. Склады имеют два выхода: один – наружу, другой – в прилегающую мастерскую.

Полы производственных помещений делают гладкими и нескользкими, настилают их из легко очищаемых материалов, которые при эксплуатации не образуют дополнительной пыли. Материал полов должен быть теплым, устойчивым к механическим ударам, не впитывать масла и агрессивные жидкости. Если полы в помещении сделаны из цемента, то на рабочих местах под ноги должны быть положены деревянные решетки. Стены и потолки в мастерских покрывают масляными и эмульсионными (силикатными) красками, не размываемыми при протирке их влажными материалами. Стены мастерских делают гладкими, без излишних выступов и ниш, карнизов и лепных украшений, чтобы на них не скапливалась пыль.

Температура воздуха в производственных помещениях в холодный и переходный период определяется характеристикой производственного помещения и категорией работы (легкой, средней, тяжелой). Учитывая, что основная часть работ относится к категории средней и легкой, температура в помещении в холодное время года должна быть не ниже 18 – 21 °С при относительной влажности 60 – 40 % и скорости воздуха до 0,2 м/с; при выполнении тяжелых работ температура в помещении должна быть не ниже 16 – 18°С при относительной влажности 60 – 40 % и скорости воздуха до 0,3 м/с. Производственные помещения должны быть снабжены доброкачественной питьевой водой температурой не выше +20 и не ниже +8°С (на расстоянии не более 75 м от рабочих мест). Если качество питьевой воды не соответствует нормам, допускающим употребление ее в сыром виде, то необходимо доставлять остуженную кипяченую воду надлежащего качества. Периодичность замены такой воды в бочках – 1 сут. Расстояние от цеха до туалетного помещения не должно превышать 100 м.


В бытовках должны быть установлены вешалка для чистой одежды с числом мест, соответствующих количеству рабочих в наибольшую смену, и шкафы для хранения спецодежды. Во всех мастерских, цехах необходимо иметь аптечки и медикаменты для оказания первой помощи, носилки, а также номера телефонов и адреса ближайших лечебных учреждений.

Большую роль для предупреждения травматизма на производстве играет освещенность рабочих мест. Для эффективного использования естественного освещения следует постоянно очищать окна от пыли и грязи, рационально расставлять оборудование и складировать материалы.

Зоны с повышенным уровнем звука должны быть обеспечены знаками безопасности. Администрация обязана обеспечить контроль уровней шума на рабочих местах и определить правила безопасной работы в шумных условиях.

Для создания необходимого микроклимата на рабочих местах в помещениях оборудуют вентиляцию и отопление. Устройство вентиляции обязательно. Может использоваться естественная, механическая и смешанная вентиляция, обеспечивающая воздухообмен 20 м 3 /ч на одного человека. Местные отсосы должны обеспечивать воздухообмен 250 м 3 /ч. В местах значительного пылеобразования (токарные станки по дереву и др.) должны быть предусмотрены отсосы с фильтрами. Работы, при которых возможно образование ядовитых газов, следует проводить в вытяжных шкафах.

В установленные правилами технической эксплуатации сроки должны проводиться профилактический осмотр и предупредительный ремонт вентиляционных устройств.

Для отопления производственных помещений обычно используют централизованное отопление: центральное водяное с металлическими радиаторами, лучистое с бетонными панелями. Для уменьшения потерь тепла грузовые и транспортные проемы утепляют, двери снабжают устройствами принудительного закрывания, а фрамуги, переплеты окон и световых фонарей, двери и тамбуры постоянно поддерживают в исправном состоянии.